CCS (CO₂ 포집 및 저장)
비용분석과 우리의 대응방향

2013. 9

본 분석물은 미래창조과학부 과학기술진흥기금과 복권기금을 지원받아 작성되었습니다.
머 리 말

이산화탄소 포집·저장기술(CCS: CO₂ Capture and Storage)은 CO₂ 대량 배출원으로부터 CO₂를 포집하여 수송과 저장을 통해 CO₂ 배출량을 감축하는 기술입니다.

오늘날의 경제는 화석연료 중심으로 되어 있고 화석연료 산업구조를 유지하면서 CO₂를 감축할 수 있기 때문에 CCS기술은 국제 온실가스 감축체제에서 가장 주목받는 기술의 하나이며, 2050년까지 이 기술을 통해 연간 40억 톤의 CO₂를 감축할 수 있을 것으로 기대되고 있습니다.

우리나라도 국제사회의 기후변화 완화를 위한 CO₂ 감축대책에 참여가 불가피해지는 상황에서 2020년까지 CO₂ 배출전망치를 30% 감축하는 목표를 세웠으며, 이를 달성하기 위한 구체적인 조치의 하나로 2020년대 초까지 CCS기술을 실증 및 상용화하여 화력발전, 철강, 정유, 시멘트, 석유화학, 천연가스 생산 등의산업에 CCS기술을 보급하기 위한 “국가 CCS 종합 추진계획”을 수립하여 추진하고 있습니다.

그러나 산업시설에 대한 CCS기술의 적용은 필연적으로 비용 증가를 수반할 수밖에 없어 산업 분야 스스로 이를 실시하는 것을 기대하기는 어렵습니다. 따라서 CCS 보급을 가속화할 수 있는 인센티브 제도 및 규제제도를 갖추어 기업들이 CCS기술을 적응하면 혜택을 볼 수 있는 여건을 만들어주어야 합니다.
본 보고서는, 미래창조과학부로부터 과학기술진흥기금을 지원받아 KISTI가 운영하고 있는 대표적인 고경력 과학기술인 활용 지원 사업인 ReSEAT 프로그램의 신희성, 오창섭, 김영철 전문연구위원이 CCS 관련 국내 연구기관들이 연구한 CCS기술의 개발현황, 비용 전망, 기술의 실험 및 상용화 시기, 인센티브제도 및 규제제도 등에 대한 연구결과를 분석 및 요약하여 국내의 CCS 관련 분야에 참고하고, 또한 CCS기술에 대한 대중의 이해를 높일 목적으로 작성한 것입니다.

필자의 노력에 감사드리며, 이올려 본고의 내용은 필자의 사견일 뿐 저희 연구원의 공식견해가 아님을 밝혀둡니다.

2013년 9월

한국과학기술정보연구원

원장 박 영서
목차

제1장 서 론 ...1

제2장 CCS기술의 개요 ...4

1. CCS기술의 특성 ...4
 가. 기술의 배경 ...4
 나. 기후정책에서 CCS의 역할 ..5

2. CCS기술의 개요 ...6
 가. CO₂ 포집기술 ...7
 나. CO₂ 수송기술 ...10
 다. CO₂ 저장기술 ...11
 라. CCS기술의 적용 분야 ..14

제3장 CCS기술의 비용동향 ...6

1. CCS 기술의 비용 전망 ...16

- iv -
제4장 CCS기술의 진척현황 .. 3

1. CCS기술의 전망 .. 33

2. CCS 프로젝트 개발현황 ... 35
 가. 산업 분야의 CCS 프로젝트 개발현황 35
 나. CCS 프로젝트의 보급 전망 ... 40
 다. CO2 지중저장 프로젝트 현황 ... 42

3. 각국의 CCS 기술개발 현황 ... 44
 가. 미국 ... 44
 나. 일본 ... 47
 다. 중국 ... 49
 라. EU 및 기타 .. 50
제5장 CCS 관련법 및 제도1

1. CCS 보급의 고려사항 .. 51
 가. 지리적 고려사항 ... 51
 나. 대중의 참여 .. 52
 다. 법과 제도의 정비 52

2. CCS 관련법과 제도의 개발현황 54
 가. 기존 규제법의 재검토 54
 나. 포괄적 CCS 규제체제의 개발 55
 다. 국외법 문제 .. 56
 라. 산업 분야를 위한 CCS 인센티브제도 56

3. CCS 보급 확대를 위한 국제협력 59
 가. 기존 국제협력의 확대 59
 나. CCS기술의 실증을 위한 기금 증액 60
 다. CCS 보급 촉진을 위한 인센티브대책 61
 라. CO2 수송 및 저장을 위한 지역별 협력그룹의 구성 62
 마. 개발도상국으로의 CCS 보급 확대 62

제6장 국내의 CCS 기술현황 및 개발계획6

1. 국가 CCS 종합 추진계획 64
 가. 목적 및 추진과제 64
 나. 분야별 추진계획 66

"vi"
다. 투자목표 및 기대효과 ... 75

2. 국내 기술현황 및 개발계획 ... 76
 가. CCS기술의 개발현황 .. 76
 나. 연소 전 CO₂ 포집기술 및 IGCC기술 개발현황 83
 다. 한국에너지기술연구원의 CaO 홍수제 연구현황 87
 라. CO₂ 지중저장기술 개발현황 .. 89

제7장 결론 ... 92

참고문헌 .. 96

<별첨 1> 한국에너지공학회지 게재논문 제출원고: "화합물 재료의 결합 조직 관찰" ... 101
표 목차

<표 2-1> CO₂ 감축기술의 종류 ... 5
<표 2-2> CO₂ 포집기술의 일반현황과 기술개발목표 8
<표 2-3> 세계의 CO₂ 대량 배출업체 수와 배출량 15
<표 3-1> CCS 프로젝트의 수 및 투자비 전망치 .. 26
<표 3-2> 세계의 CO₂ 파이프라인 길이 및 투자비 전망 30
<표 3-3> 세계의 CO₂ 저장용량 및 투자비 전망 .. 32
<표 4-1> 세계 각국의 CO₂ 포집기술 개발현황 .. 34
<표 4-2> 발전 분야 이외의 산업 분야별 CO₂ 포집기술의 성숙시키 37
<표 4-3> 2020년까지 CCS 프로젝트, CO₂ 포집량 및 CCS 비용 전망 .. 42
<표 4-4> CO₂ 저장저장 프로젝트 현황 .. 43

그림 목차

<그림 2-1> CO₂ 분리·회수기술의 분류 .. 7
<그림 2-2> CO₂ 지중 저장 대상 지층에서의 저장방법 개략도 13
<그림 3-1> CCS기술을 적용한 화력발전소의 발전비용 ... 18
<그림 3-2> 화력발전소 CCS기술의 CO₂ 배출 회피비용 ... 19
<그림 3-3> CO₂ 포집기술 적용 석탄발전소의 발전비용 ... 21
<그림 3-4> 2010~2050년 기간의 지역별 CCS 투자비 전망 ... 27
<그림 3-5> CO₂ 수송 파이프라인의 지역별 투자비 전망 ... 29
<그림 3-6> CO₂ 저장의 지역별 투자비 전망 31
<그림 4-1> 2010~2050년 기간의 CCS기술의 보급 전망 ... 41
<그림 4-2> 세계의 CO₂ 지중저장 프로젝트의 위치 44

- viii -
<그림 6-1> 국가 CCS 종합 추진계획의 중장기 로드맵 65
<그림 6-2> 대규모 CCS 실증 프로젝트의 2단계 추진계획 67
<그림 6-3> 국내 CO₂ 수송인프라 개념도 69
<그림 6-4> CCS 기술개발 및 보급의 기대효과 76
<그림 6-5> 두산밥콕의 순 산소 연소기술 공정도 82
<그림 6-6> 매체순환식 가스연소시스템의 개략도 83
<그림 6-7> 국내 IGCC 중장기 개발계획 86
<그림 6-8> CaO 흡착제 제조에서 CO₂ 흡수제 원료물질 및 역할 88
<그림 6-9> 한국해양연구원의 CO₂ 해양저장기술 개발 로드맵 90
<그림 6-10> 한국지질자원연구원의 CO₂ 지중저장 중장기 로드맵 91
제 1 장

서 론

○ 오늘날 기후변화 방지를 위한 이산화탄소(CO₂)의 감축은 국제 사회의 의무사항이 되고 있다. 그러나 현재 어느 기술도 온실 가스 감축을 위한 해결책이 되지 못하고 있어 에너지 효율 개선, 재생에너지/원자력 개발, CO₂ 포집 및 저장(CCS: CO₂ Capture and Storage)기술의 보급 등을 병행하는 것이 가장 현실적인 대책으로 평가되고 있다.

○ 우리나라도 저탄소 녹색성장을 국가비전으로 설정하고 2020년 까지 CO₂ 배출량 전망치를 30%(연간 약 2.44억 톤에 해당) 감 축하는 목표를 세웠으며(1), 이를 달성하기 위한 구체적인 조치 로서 부문별·업종별·연도별 온실가스 감축목표를 설정하여 시 행하고 있다.

○ 또한 정부는 국무회의와 녹색성장위원회를 통해 CO₂를 대량 배 출하는 화력발전, 철강, 정유, 시멘트, 석유화학, 천연가스 생산 등의 산업 분야에서 배출되는 CO₂를 포집하여 지중(육상 또는
해저에 저장하는 CCS기술을 주요 CO2 감축기술의 하나로 선정하고 국가 CCS 종합 추진계획을 수립하였다(2).

○ 특히, CCS기술은 대체에너지가 개발될 때까지 화석연료 경제를 유지하면서 CO2를 감축할 수 있는 유일한 기술이기 때문에 큰 의미를 부여받고 있다. 국제에너지기구(IEA: International Energy Agency)는 2050년의 세계 온실가스 감축량 중 19%가 CCS기술로 감축될 것이며, CCS기술이 없으면 CO2 감축비용이 70% 이상 증가할 것이라고 평가한 바 있다(3).

○ 그러나 현재 CCS기술의 적용에 가장 유리한 산업 분야인 석탄/가스발전의 경우에도 CCS기술을 적용하지 않은 경우보다 발전비용이 20유로/MWh 이상 비싸지는 것이 문제이다. 따라서 오늘날 CCS기술의 비용 개선은 온실가스 감축을 위한 핵심과제가 되고 있으며, 세계 각국은 100여개 이상의 CCS 프로젝트를 수행(또는 계획)하면서 기술 개선을 위해 노력하고 있다.

○ CCS기술의 실증과 상용화에서 가장 핵심이 되는 과제는 비용 저감이다. 국제 연구기관들은 2050년까지 저탄소 에너지기술의 연구개발에 매년 100억~1,000억 달러가 투자될 것으로 분석하고 있으며, 특히 현재 개발되고 있는 CCS기술들의 비용분석을 통해 향후 10년이 CCS기술의 상용화 달성에 가장 중요한 시기라고 예상하고 있다.

○ 따라서 우리나라도 CCS기술의 비용동향, CCS 보급을 위한 법과 제도의 추진동향, 기술의 진척현황 등을 정확히 파악하여 국내의 기술개발과 실증 및 보급을 위한 전략과 정책을 마련하여 구체적인 보급계획을 수립 및 추진해나갈 필요가 있으며, 또한 관련 산업 분야의 기업들이 비용 증가를 수반하는 CCS기술을 수용할 수 있는 준비를 할 수 있도록 하는 것이 중요하다.

○ 본 기술동향연구에서는 IEA의 이산화탄소처리 리더십포럼 (C SLF: Carbon Sequestration Leadership Forum), EU의 ZEP, 국제탄소포집·저장연구소(GCCSI: Global Carbon Capture and Storage Institute), 국제해사기구(IMO: International Maritime Organisation) 등 국제연구기관들의 최신 CCS 비용분석, 법제도 추진현황 및 기술 진척현황 등을 요약하여 정부, 대학, 연구기관 및 중소기업 등의 CCS 연구개발방향, 개발전략, 개발일정 등에 참고할 수 있는 자료를 생산하였다.
제 2장

CCS기술의 개요

1. CCS기술의 특성

가. CCS기술의 배경

○ 기후변화에 관한 정부간협의회(IPCC)는 지구온난화를 방지하기 위해 지구평균기온을 산업시대 이전에 비해 2℃ 이내로 억제하고, 이를 위해 대기 중 CO₂ 농도를 450ppm\(^1\) 이하로 유지할 것을 촉구하고 있다. 따라서 유엔의 기후변화협약(UNFCCC) 등에서는 450ppm 조건을 충족하기 위해 2050년까지 세계의 연간 온실가스 배출량을 50~80% 감축하는 목표를 제시하였다.

○ 세계는 화석연료 사용으로 연간 235억 톤의 CO₂를 대기 중으로 방출하고 있다\(^5\). CCS기술이 상용화되는 2020년대 초부터 CCS기술을 대량으로 보급해가면 2050년에는 연간 CO₂ 배출량

\(^1\) 세계 이산화탄소 농도의 준거 지표인 미국 해양대기청(NOAA) 하와이 Mauna Loa산 측정의 대기 중 이산화탄소 농도는 2013년 5월 9일 현재 400ppm 돌파.
약 320억 톤 예상 중 약 20%를 CCS기술로 감축할 수 있고\(^{(3)}\), CCS기술이 상용화되지 않으면 온실가스 감축비용이 70% 이상 증가할 것이라고 전망되고 있다\(^{(6)}\).

<table>
<thead>
<tr>
<th>구분</th>
<th>세부 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO(_2) 고정</td>
<td>화학적 전환</td>
</tr>
<tr>
<td></td>
<td>전기화학적 전환</td>
</tr>
<tr>
<td></td>
<td>생물학적 전환 - 미세조류, 메탄 생성 세균</td>
</tr>
<tr>
<td></td>
<td>탄산염광물화 기술</td>
</tr>
<tr>
<td></td>
<td>생광물화 기술</td>
</tr>
<tr>
<td>CO(_2) 저장</td>
<td>지중저장</td>
</tr>
<tr>
<td></td>
<td>해양저장</td>
</tr>
<tr>
<td>CO(_2) 포집/저감</td>
<td>물리적 포집/저감</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>화학적 포집/저감</td>
<td>석회로서 연소가스 중 CO(_2) 추출</td>
</tr>
<tr>
<td></td>
<td>연료 대체에 의한 달탄소화</td>
</tr>
<tr>
<td></td>
<td>CO(_2) 재순환 발전</td>
</tr>
<tr>
<td></td>
<td>CO(_2)의 전기화학적 분해</td>
</tr>
<tr>
<td></td>
<td>CO(_2)의 광화학적 분해</td>
</tr>
<tr>
<td></td>
<td>CO(_2)의 열분해</td>
</tr>
<tr>
<td>포집/저감</td>
<td>순 산소 연소공정</td>
</tr>
<tr>
<td>신중정</td>
<td>금속매체 순환식 연소공정</td>
</tr>
</tbody>
</table>

나. 기후정책에서 CCS의 역할

○ 2013년 8월에 발표된 IPCC의 제5차 평가보고서 초안은 기후변화에 대한 인류의 책임을 5년 전의 90∼100%보다 높은 95∼
100%로 평가하고 기후변화의 심각성을 제차 경고하였다(8).

○ 세계 에너지 소비량은 2011년 기준으로 석유 환산 122.75억 톤이며 그 중 87%가 화석연료이다. 화석연료 사용은 대기 중의 CO₂ 농도를 증가시키는 가장 큰 요인이기 때문에 화석연료 사용량 감소와 CO₂ 배출량 감축은 기후변화대책의 시급한 해결 과제가 되고 있다(9).

○ CO₂ 감축대책에는 에너지효율 개선, 화석연료 전환, 원자력과 재생에너지 개발, 탄소흡수원(삼림) 개발, CCS기술의 보급 등이 추진되고 있는데, 특히 CCS기술은 화석연료 산업구조를 유지하면서도 CO₂를 감축할 수 있기 때문에 미래의 새로운 에너지체제가 구축될 때까지 중요한 역할을 담당할 수밖에 없다.

2. CCS기술의 개요

○ CCS기술은 CO₂를 포집, 수송 및 저장하는 3부분으로 구성되어 있고, CO₂를 대량 배출하는 화력발전, 철강, 정유, 시멘트, 석유화학, 천연가스 생산, 바이오매스 에너지시설 등에 적용될 수 있다. 현재의 기술수준은 CO₂ 배출량의 85~95%를 회수하여 저장할 수 있다(10).
가. CO₂ 포집기술

○ CO₂ 포집기술: ① 화석연료의 연소 배출가스에서 CO₂를 회수하는 연소 후 포집, ② 연료의 사전 처리로 CO₂와 수소(H₂)로 전환시킨 후에 CO₂/H₂ 혼합가스에서 CO₂를 분리하거나 또는 혼합가스의 연소 배출가스에서 CO₂를 회수하는 연소 전 포집, ③ 순 산소만으로 연소시켜 CO₂ 농도를 높인 후에 포집을 용이하게 하는 기술의 3가지이다.

<그림 2-1> CO₂ 분리·회수기술의 분류(11)
표 2-2. CO₂ 포집기술의 일반현황과 기술개발목표

<table>
<thead>
<tr>
<th>CO₂ 포집기술</th>
<th>2010년 기술현황</th>
<th>2010~2020년 연구개발 및 실험</th>
<th>2020~2030년 이후 장기목표</th>
</tr>
</thead>
<tbody>
<tr>
<td>효과성:</td>
<td>- 공정개선/열 환경 최적화로 에너지 비용 절감</td>
<td>- 2030년 이후 CO₂ 포집을 포함한 연소구성에서 85% 이상 포집 가능한 상용용 개발</td>
<td>- 2025년까지</td>
</tr>
<tr>
<td>- CCS 적응 산업시설에 추가적 에너지 공급 필요</td>
<td>- 2030년 이후 CO₂ 포집을 포함한 연소구성에서 45% 이상 포집 시스템 개발</td>
<td>- 2020년까지</td>
<td></td>
</tr>
<tr>
<td>- 정유와 액화천연가스 등의 분야별 CO₂ 수집 시스템 필요</td>
<td>- 700/720도 이상 35MPa 이상에서 미분쇄 연료 USC 보일러 사용화</td>
<td></td>
<td></td>
</tr>
<tr>
<td>비용:</td>
<td>- 새로운 개발 투자비</td>
<td>- 투자비 추가로 10% 절감</td>
<td>- 투자비 추가로 10% 절감</td>
</tr>
<tr>
<td>- 생산비 증가</td>
<td>- CCS 신설</td>
<td>- 2025년까지</td>
<td></td>
</tr>
</tbody>
</table>

(1) 연소 후 포집기술

○ 연소 후 CO₂ 포집기술은 상업조건에서 질소와 10% 내외의 저농도 CO₂를 분리한다. 여러 공정 중 저압/저농도의 화학흡수법이 가장 우수하다.

○ 특히 아민계 용제의 화학흡수법은 고순도의 CO₂를 선택적으로 분리할 수 있어 많은 시설들이 운영 중에 있으나 아직까지 상업용으로 실증되지 않았다. 흡수/발기공정의 개선과 우수한 흡수제 개발에 연구가 집중되고 있다. 그러나 연소 전 포집기술에 비해 미래 가치는 낮다고 볼 수 있다.
(2) 연소 전 포집기술

○ 연소 전 CO₂ 포집기술은 CO₂ 발생원이 주로 석탄가스 또는 천연가스인 경우의 개질반응 공정에 적용되고 있다. 포집반응 조건이 고온/고압이기 때문에 전환율이 높고 CO₂ 단위당 세مر비용이 가장 저렴하다. 이 기술의 상용화는 CO₂ 포집의 3가지 기술 중에서 가장 나중이 될 것으로 예상되지만 기술의 파급력은 가장 클 것으로 평가되고 있다.

○ 연소 전 CO₂ 포집기술에는 습식흡수법, 건식흡수법, 하이드레이트법, 박분리법 등이 있다. 습식법의 전환율이 높기 때문에 일부 석유화학산업에서 이용되고 있으나 CO₂ 포집반응이 저온에서 이루어지므로 공정상 열효율이 낮다.

○ 박분리법과 하이드레이트법은 아직 기초단계에 있지만 고체흡수법은 고온/고압조건에서 CO₂를 고효율로 포집할 수 있어 미국, 일본 등에서 집중적으로 개발되고 있다. 이들 국가는 무배출(zero-emission) 기술의 범주에서 고체흡수법을 개발하고 있으며, 우리나라도 녹색기술의 범주에 이를 포함시키고 있다.

○ 현재 연소 전 CO₂ 포집기술은 주로 석탄가스화복합발전(IGCC: Integrated Gasification Combined Cycle)에서 연구되고 있다. 석탄가스화 공정에는 석탄의 부분산화로 H₂와 일산화탄소(CO)가 생성되는데 이 혼합가스의 H₂와 CO₂ 전환공정에서 CO₂를
분리 포집할 수 있고 분리된 수소는 가스터빈의 연료가 된다.

(3) 순 산소 연소기술

○ 공기분리장치(ASU: Air Separation Unit)로서 공기 중의 산소를 분리하여 순 산소(95% 이상)로 연소시험으로써 배출가스의 CO₂ 농도를 높여 CO₂ 포집을 용이하게 하는 기술이다. 이를 위해서는 기존의 연소설비에 ASU를 설치해야 한다(12).

○ 순 산소 연소기술을 실증하기 위해서는 고효율의 ASU장치와 O₂/CO₂로 가동되는 가스화장치의 개발이 필요하다. 특히 순 산소기술에 사용되는 산소를 값싸게 생산할 수 있는 기술개발이 선행되어야 한다.

○ 이 기술에 대해서는 세계적으로 활발한 연구가 진행되고 있으나 아직까지 상용화된 사례는 없다. 미국의 FERC, ANL, Air Liquide 및 B&W, 캐나다의 CANMET, 네덜란드의 IFRF, 일본의 IHI 등이 이 기술을 연구하고 있고, 독일에서도 30MW의 화력발전소에서 시범시설을 운용하고 있다.

나. CO₂ 수송기술

○ CO₂ 수송기술은 CO₂ 배출시설에서 분리·회수된 CO₂를 고압으
로 가압한 상태에서 대규모 저장소까지 장거리 수송하는 기술이다. 이 기술은 천연가스 수송(파이프라인 또는 선박)과 큰 차이가 없다.

○ 파이프라인을 이용한 천연가스 수송은 이미 30년 이상 기술이 개발되어 왔고 연간 수송량 4,000만 톤 이상, 수송거리 2,500km 이상으로 기술이 성숙되어 있다. 그러나 CO₂ 수송의 경우는 파이프라인의 부식 방지를 위해 수송을 시작하기 전에 CO₂에 함유된 습기를 제거해주어야 한다.

○ CO₂ 선박수송은 액화천연가스의 선박수송과 유사한 기술이다. CO₂를 선박으로 수송하는 경우도 경제성이 있는 것으로 연구되고 있지만 아직까지는 대부분 소량의 CO₂를 수송하는 경우를 대상으로 연구하였기 때문에 CCS기술의 보급을 위해서는 CO₂ 대량 수송에 대한 기술 실증이 필요하다.

d. CO₂ 저장기술

○ CO₂ 저장기술: ① 퇴적층 내 석유·가스전, 염대수층, 석탄층 등을 활용한 지중저장, ② 수심 2,500m 이하의 심해 수중 또는 해저에 저장시키는 해양분사·저류법의 해양저장, ③ 탄산염광물
화 및 생광물화 등이 있다. 이들은 각각의 장단점이 있으나 현재는 지중저장기술이 가장 앞서 있다.

○ CO의 해양분산 또는 해양저장시는 CO를 기체, 액체, 고체 또는 수화물(hydrate) 상태로 해양이나 해저 바닥에 저장하는 기술이다. 그러나 CO의 해양 주입은 해양 생태계를 빠른 속도로 파괴시키는 것으로 알려지고 있다. 또한 해양 자체가 열린계로서 대기와 함께 탄소순환을 하고 있기 때문에 주입된 CO의 장기적이고 안정적인 해양 내 저장을 보장할 수 없다. 이러한 이유로 당분간 실현이 어려울 것으로 전망되고 있다.

○ 탄산염광물화 기술은 CO를 칼슘과 마그네슘 등의 금속산화물(metal oxide)과 화학적으로 반응시켜 불용해성의 탄산염광물(carbonate mineral) 상태로 저장하는 기술이다. CO를 영구 저장할 수 있고 누출 위험성이 없지만 화학반응 속도가 느리고 반응에너지 소모량이 높다는 문제점이 있다. 또한 탄산염광물의 저장과 처리 자체가 새로운 환경문제가 될 수 있기 때문 에 탄산염광물화도 아직까지 미성숙 기술로 평가받고 있다.

○ CO 지중저장기술은 육상이나 해저에서 750~1,000m의 심도에 존재하는 적합한 지층에 CO를 저장하는 기술이다. 이러한 심도에 주입된 CO는 초임계유체(supercritical fluid) 상태로 존재하기 때문에 거동이 느리고 주변 지층이나 지중유체(geofluid)
와 반응하여 고착 또는 용해된다.

○ 따라서 지하 800m 이상에 CO$_2$를 저장하여 장기간 누출을 방지하기 위해서는 물리적 및 지구화학적 측면의 누출방지체계가 구축될 수 있어야 하며 상부에 불투수층인 네개암(cap rock)이 존재해야 한다. 폐탄광의 경우에는 깊이가 얕고 CO$_2$ 누출 가능성 이 높아 저장효율이 떨어질 수 있다. 또한 CO$_2$ 지중저장은 지층이 장기간 안정적이고 주입과 저장 및 밀봉이 가능해야 한다.

<그림 2-2> CO$_2$ 지중저장 대상 지층에서의 저장방법 개략도$^{[1]}$

○ 세계적으로 CO$_2$ 지중저장 잠재력은 약 2조 톤 정도로 평가된
다. 그러나 지층의 밀봉능력이 저장용량에 비례하지 않기 때문에 저장소 개발을 위해서는 지층의 심도, 구조, 광물 및 지구화학적 특성, 불연속면(예, 균열, 절리, 단층) 상태, 지하수 특성, 지열 및 지구조직 응력 등의 요소를 고려할 필요가 있다.

○ CO₂ 지중저장과 유전의 석유회수증진(EOR: Enhanced Oil Recovery), 탄광의 메탄회수증진(ECBM: Enhanced Coal-Bed Methane recovery)을 병행하면 경제성을 높일 수 있다. 미국, 캐나다 및 EU 등은 1996년부터 석유 및 천연가스 개발사업과 CO₂ 지중저장기술을 연계하고 있는데 EOR을 실시하면 원유 매장량의 7~23%를 추가 회수할 수 있다(16).

○ 또한 ECBM을 이용한 최초의 상업적 프로젝트는 미국 New Mexico주 San Juan Basin에서 1996년부터 1일 23,000m³/well의 메탄을 회수하고 있는 Burlington Resources Allison Unit 시험프로젝트이다. 이 프로젝트는 메탄 생산량을 약 75% 증가시켰다.

리. CCS기술의 적용 분야

○ CCS기술은 CO₂를 대량 배출하는 화력발전, 철강, 정유, 시멘트,
석유화학, 천연가스 생산, 바이오매스 에너지시설 등을 대상으로 한다. IPCC의 조사에 의하면 세계적으로 연간 10만 톤 이상의 CO\textsubscript{2} 배출업체에게 CCS기술을 적용할 경우의 대상 업체 수는 7,887개, 연간 배출량은 1.35억 톤이다.

<표 2-3> 세계의 CO\textsubscript{2} 대량 배출업체 수와 배출량\cite{ref}

<table>
<thead>
<tr>
<th>분 야</th>
<th>업체 수</th>
<th>배출량 (연간 백만톤-CO\textsubscript{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>화석연료</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 전력</td>
<td>4,942</td>
<td>10,539</td>
</tr>
<tr>
<td>- 시멘트</td>
<td>1,175</td>
<td>932</td>
</tr>
<tr>
<td>- 정유</td>
<td>638</td>
<td>78</td>
</tr>
<tr>
<td>- 철강</td>
<td>269</td>
<td>646</td>
</tr>
<tr>
<td>- 석유화학</td>
<td>470</td>
<td>379</td>
</tr>
<tr>
<td>- 석유 및 가스 처리</td>
<td>(미집계)</td>
<td>50</td>
</tr>
<tr>
<td>- 기타</td>
<td>90</td>
<td>33</td>
</tr>
<tr>
<td>바이오매스에너지</td>
<td>303</td>
<td>91</td>
</tr>
<tr>
<td>합계</td>
<td></td>
<td>7,887</td>
</tr>
</tbody>
</table>

○ 대기 중의 CO\textsubscript{2} 농도 감소는 인위적인 CO\textsubscript{2} 배출량 중에서 몇 %를 포집하느냐에 달려 있다. 현재의 기술 수준으로는 배출량의 85〜95%를 포집할 수 있고 수송과 저장과정의 누출을 고려하면 약 80〜90%를 포집하여 저장할 수 있다. CO\textsubscript{2} 배출시설에 CCS를 설치하면 에너지 소비량이 약 10〜40% 증가한다.
제3장

CCS기술의 비용동향

1. CCS 기술의 비용 전망

가. 분석대상 기술 및 시설의 개요

○ CCS기술의 비용 전망을 포괄적으로 분석한 가장 최근의 자료에는 EU의 ZEP(Zero Emission Platform)가 2011년 7월에 발표한 보고서가 있다. 본 절에서는 이 보고서를 중심으로 CCS기술의 비용 전망을 요약한다.

○ CO2 포집비용의 분석대상 기술은 연소 후 포집, 연소 전 포집, 순산소 연소의 3가지 기술이며, 적용 대상 시설은 현재 가장 우선적으로 CCS가 적용될 것으로 예상되고 있는 발전 분야의 석탄발전, 갈탄발전, 천연가스발전의 3가지 발전소이다.

○ CO2 수송비용은 파이프라인수송과 선박수송의 2가지가 분석되었으며, CO2 저장기술은 페유전·가스전 및 염대수층을 활용하
는 2가지 지중저장이 분석되었다. 또한 모든 경우에 CCS기술은 2020년 이후에 상용화되는 것으로 가정되었다.

○ CCS 보급이 추진되고 있는 EU 15개 회원국의 자료가 사용되었고, 기준발전소는 2020년에의 조에 CO2 포집기술이 처음 적용되는 발전소이며, 최적화발전소는 2025년 이후에 CCS기술이 성숙된 이후의 발전소를 말한다.

○ CCS 적용 시설의 개요

- 1개의 발전소와 1개의 CO2 저장소를 연계하는 경우와 다수의 발전소를 다수의 저장소와 연계하는 경우가 분석되었다.

- 기준발전소는, 1) 천연가스발전소는 단일축 복합가스터빈, 전기출력 420MWe, 효율 58~60%, 발전비용 45~90유로/MWh이고, 2) 석탄발전소는 발전비용 40~50유로/MWh, 전기출력 736MWe의 유동상 초임계 발전소, 갈탄발전소는 2종류의 유동상 초임계 발전소이며 전기출력은 989MWe와 920MWe(갈탄을 사전 건조처리 경유)이다.

나. CCS 화력발전소의 발전비용

○ EU ZEP의 연구결과, CCS기술을 적용한 화력발전소의 발전비
용은 <그림 3-1>과 같다.

<그림 3-1> CCS기술을 적용한 화력발전소의 발전비용

○ CCS기술이 적용되면 추가비용 때문에 화력발전소의 발전비용은 증가할 수밖에 없다. CCS 석탄발전소의 발전비용은 약 50유로/MWh에서 약 70유로/MWh로 증가하였다. 그러나 천연가스발전소는 약 95유로/MWh로 높아졌다.

○ 또한 탄소배출권가격이 CO2 톤당 40유로 이하로 낮을 경우에도 탄소배출권 구매비용을 포함한 석탄(또는 갈탄)발전소의 발전비용은 천연가스발전소보다 낮다.
반면에 천연가스발전소는 가스가격이 6유로/GJ 이하로 낮을 경우에 경쟁력을 가질 것으로 예상되는데, 이는 천연가스발전소의 MWh당 CO₂ 배출량이 석탄발전소의 약 1/2 수준이므로 CO₂ 포집, 수송 및 저장비용이 적게 들기 때문이다.

CCS기술은 전체비용의 80~90%를 CO₂ 포집비용이 차지하지만, CCS기술이 적용되는 시설의 선정은 CO₂의 수송 및 저장에 의해 결정된다. 화력발전소에 CCS기술을 적용하여 CO₂ 배출을 회피하기 위한비용의 전망은 <그림 3-2>와 같다.

<그림 3-2> 화력발전소 CCS기술의 CO₂ 배출 회피비용

석탄발전소의 CO₂ 회피비용은 37유로/톤-CO₂, 갈탄발전소는 34유로/톤-CO₂, 천연가스발전소는 90유로/톤-CO₂이다. 따라서
2020년대에 EU의 탄소배출권가격이 CO₂ 톤당 35유로 수준이 라고 가정하면, CCS 석탄발전소의 상용화가 가능할 것으로 전망된다. 그러나 천연가스발전소의 경우는비용 증가 때문에 그 때까지 CCS기술을 적용하기 어려울 것으로 전망된다.

d. CO₂ 포집비용 전망

○ 여기서는 2020년대 초까지 상용화될 것으로 예상되는 제1세대 CO₂ 포집기술인 연소 후 포집, 연소 전 포집, 순산소 연소의 3 가지 포집기술에 대한비용을 전망하고 있다.비용 분석에서 석탄과 갈탄발전소에는 3가지 CO₂ 포집기술이 모두 적용되었고 천연가스발전소에는 연소 후 포집기술만 적용되었다.

○ 석탄발전소는 3가지 포집기술의비용에서 큰차이가 없을 것으로 전망된다. CCS기술이 적용되지 않은 기준 석탄발전소의 발전비용은 약 48유로/MWh인데, 여기에 CO₂ 포집기술이 적용된 최적화발전소의발전비용은 65∼70유로/MWh로 증가하였다. 그러나 3가지 포집기술의기술개발수준이 다르기 때문에상용화 초기단계에 모든기술이 상용화되는것은 없을 전망이다.

○ 천연가스발전소의 기준발전소발전비용은 70유로/MWh이며, 여
기에 연소 후 CO\textsubscript{2} 포집기술을 적용하면 비용이 90유로/MWh로 증가하였다. 그러나 천연가스발전소는 석탄발전소에 비해 투자비가 적고 연료비가 높기 때문에 가스가격이 낮아지면 경쟁력이 높아지며, 탄소배출권가격이 CO\textsubscript{2} 톤당 35유로 수준이고 가스가격이 5유로/GJ 수준이면 CCS 천연가스발전소가 CCS 석탄발전소와 경쟁할 수 있을 것으로 전망되었다.

<그림 3-3> CO\textsubscript{2} 포집기술 적용 석탄발전소의 발전비용((4))

○ 기준 간탄발전소에 CCS기술을 적용할 경우의 CO\textsubscript{2} 포집 회피 비용은 CO\textsubscript{2} 톤당 30유로 이하이지만 석탄발전소는 30유로 이상으로 전망되었다. 또한 천연가스발전소의 경우에는 약 80유로
로 전망되었다.

○ 2020년대 초부터 CCS기술을 보급하는 초기 10년 동안 CO₂ 포집 회피비용은 소형 발전소가 대형 발전소보다 높고, CCS기술이 적용된 최저화발전소보다 탄소배출권을 구매해야 하는 기준 발전소가 높은 것으로 전망되었다.

라. CO₂ 수송비용 전망

○ 여기서는 2020년대 초까지 CCS기술을 상용화할 경우에 이용될 것으로 예상되는 CO₂ 수송기술 중에서 파이프라인수송 및 선박수송의 비용을 전망하고 있다.

○ EU ZEP의 비용 전망에 의하면 파이프라인 CO₂ 수송비용은 거리에 비례적이지만 선박 CO₂ 수송비용은 거리에는 비교적 무관하다. 일반적으로 액화시설은 발전소와 먼 거리에 위치한 경우가 많다. 따라서 CO₂ 수송은 시설규모에 따라 단계적으로비용이 높아지는 경향을 보인다. 또한 파이프라인수송은 시설규모에 따른 비용 감소효과가 높지만 선박수송은 그렇지 않다.

○ 육상 파이프라인을 이용하여 소규모(연간 250만 톤)의 CO₂를 단거리(180km) 수송하는 비용은 톤당 5유로 수준이다. 그러나
CO₂ 수송량이 연간 2,000만 톤의 대규모로 증가하면 톤당 1.5 유로로 크게 낮아진다.

○ 같은 조건에서 해상 파이프라인수송의 CO₂ 수송비용은 각각 톤당 9.5유로 및 3.5유로이다. 또한 수송거리가 500km로 증가하면 육상 파이프라인의 수송비용은 CO₂ 톤당 3.7유로이고 해상 파이프라인은 6유로이다.

○ 선박수송의 경우에 CO₂ 수송비용은 수송거리에 덜 민감하다. 연간 2,000만 톤 이상의 CO₂를 단거리(180km) 수송하는 비용은 CO₂ 액화비용을 포함하여 톤당 11유로이며, 500km의 장거리는 12유로, 1,500km의 초장거리는 16유로 수준이다. 또한 연간 250만 톤의 CO₂를 500km 수송하는 경우에도 액화비용을 포함한 수송비용은 톤당 15유로 이하이다.

마. CO₂ 저장비용 전망

○ CO₂ 저장기술은 아직까지 상용화되지 않았고 시범적인 프로젝트들이 진행되고 있다. 따라서 EU ZEP의 비용분석에서도 CO₂ 저장기술을 구성하는 각 부문의 비용을 상황식으로 합치는 방식으로 분석하였다.
○ EU ZEP의 연구에서는 2가지의 대표적인 CO₂ 저장기술 즉, 폐유전·폐가스전과 염대수층에 CO₂를 지중 저장하는 2가지 경우의 비용을 분석하였고, 또한 육상의 지중저장과 해저의 지중저장을 구분하여 분석하였다.

○ 2020년대 초의 상용화 CCS기술에서 CO₂ 저장비용은 저장부지에 따라 CO₂ 톤당 1~20유로가 예상되었다. 비용이 적게 드는 부지부터 개발되어 점차 비용이 증가할 것으로 전망되며, 또한 저장규모가 커질수록 비용이 증가한다.

○ 육상의 염대수층 저장비용은 CO₂ 톤당 2~12유로, 육상의 폐유전·가스전 저장은 17유로, 해저의 염대수층 저장은 6~20유로, 해저의 폐유전·가스전 저장은 2~14유로로 예상되었다.

○ 이를 종합하면, 육상 지중저장이 해저 지중저장보다 비용이 적게 든다고 해저의 폐유전·가스전 저장이 염대수층 저장보다 비용이 적게 든다. 따라서 가장 비용이 많이 드는 저장방법은 해저의 염대수층 저장이다.

○ CO₂를 저장할 수 있는 부지와 적정한 저장용량의 결정에는 고려해야 할 사항들이 많다. 현재 CO₂ 저장에 적합한 부지들은 대부분 저장용량이 2,500만~5,000만 톤 규모이며, 따라서 연간 500만 톤의 CO₂를 40년간 저장하기 위해서는 이러한 규모의 저장부지를 5개 이상 개발해야 할 것이다.
○ 유럽의 경우는 CO₂ 저장이 가능한 부지들이 많지만 각 부지의 저장용량이 크지 않다는 점이 문제이다. 또한 해저 억대수층의 경우는 저장 잠재력이 높지만 비용이 많이 든다. 유럽에서 현재까지 발견된 CO₂ 저장에 적합한 억대수층들은 CO₂ 저장비용이 톤당 2~4유로 수준이지만 먼 거리에 위치한 억대수층의 경우는 톤당 10유로 이상으로 높아진다.

2. CCS 투자비 전망

가. CCS 프로젝트 투자비 전망

○ 기후변화 방지를 목적으로 2050년까지 CO₂ 배출량의 절반 이상을 감축하는 목표를 달성하기 위해 CCS기술을 활용하려면 막대한 투자가 불가피하다.

○ IEA의 연구에 의하면 2050년까지의 CO₂ 배출량 감축목표를 달성하는데 CCS기술이 기여하기 위해서는 약 3,400개의 CCS 프로젝트를 개발해야 하는데 여기에는 약 2.5~3조 달러의 비용이 들 것으로 추정되고 있다(3). 이는 국제사회가 2050년까지 CO₂ 배출량 감축목표를 달성하기 위해 저탄소 기술을 개발 및 보급하는데 필요한 총 투자비의 약 3% 수준이다.
표 3-1 CCS 프로젝트의 수 및 투자비 전망치

<table>
<thead>
<tr>
<th></th>
<th>2020년 프로젝트 수</th>
<th>2050년 프로젝트 수</th>
<th>2010~2020년 CCS추가비용* (10억달러)</th>
<th>2010~2050년 CCS추가비용* (10억달러)</th>
<th>2010~2020년 총 투자비** (10억달러 미국$)</th>
<th>2010~2050년 총 투자비** (10억달러 미국$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD 북미</td>
<td>29</td>
<td>590</td>
<td>23.6</td>
<td>1,635</td>
<td>61.7</td>
<td>1,130</td>
</tr>
<tr>
<td>OECD 유럽</td>
<td>14</td>
<td>320</td>
<td>6.8</td>
<td>590</td>
<td>15.8</td>
<td>475</td>
</tr>
<tr>
<td>OECD 태평양</td>
<td>7</td>
<td>280</td>
<td>5.9</td>
<td>645</td>
<td>14.1</td>
<td>530</td>
</tr>
<tr>
<td>중국 및 인도</td>
<td>21</td>
<td>950</td>
<td>7.6</td>
<td>1,315</td>
<td>19.0</td>
<td>1,170</td>
</tr>
<tr>
<td>비OECD</td>
<td>29</td>
<td>1,260</td>
<td>9.7</td>
<td>1,625</td>
<td>19.8</td>
<td>1,765</td>
</tr>
<tr>
<td>세계 합계</td>
<td>100</td>
<td>3,400</td>
<td>54.0</td>
<td>5,810</td>
<td>130.0</td>
<td>5,070</td>
</tr>
</tbody>
</table>

* 수송 및 저장비용 포함, ** 수송 및 저장 투자비 제외

○ 또한 CO₂를 배출하는 기존 시설에 CCS를 실시하는 비용도 필요하며 2050년에는 그 비용이 연간 약 3,500~4,000억 달러에 이를 것으로 분석되고 있다. 이러한 비용은 CCS 총 누적비용의 약 40%를 차지할 것으로 추정되고 있다.

○ 2010~2050년 기간의 CCS 누적 투자비는 약 5조 달러(연평균 1,250억 달러)로 추정된다. 그 중에서 2050년까지의 CO₂ 포집시설 투자비는 약 1.3조 달러(전체의 25%)이며, CCS 포집시설을 설치하기 위해서는 약 34%의 추가적인 비용이 드는 것으로 분석되고 있다.

○ CO₂ 수송을 위한 인프라 구축에 소요되는 비용은 2050년까지 0.5~1조 달러, CO₂ 저장시설에는 880~6,500억 달러의 비용이 추정되고 있다. <그림 3-4>는 IEA가 분석한 2010~2050년 기
간의 지역별 CCS 투자비 전망이다.

<그림 3-4> 2010~2050년 기간의 지역별 CCS 투자비 전망

* 수송 및 저장 투자비 제외
** 점선 위는 OECD, 아래는 비OECD를 나타냄

○ CCS 실시에 따른 CO\(_2\) 감축비용도 지역과 부문별로 다르다. 포집비용은 시간이 지나면서 기술 개선을 통해 저감될 것으로 예상되며, 수송비용도 지역별 수송 파이프라인의 구축과 수송용량 최적화에 의해 감소할 것으로 예상된다.

나. CO\(_2\) 수송의 투자비 전망

○ CO\(_2\)를 포집하여 저장하기 위해서는 포집시설로부터 저장소까지
지 CO₂를 수송해야 하며, 2050년까지 CCS기술이 적용된 청정 석탄시스템을 대규모 보급하기 위해서는 파이프라인을 이용하여 CO₂를 대량 수송해야 할 것이다.

○ 그러나 파이프라인수송은 파이프라인 네트워크와 운송처리시스템을 구축하는 등 많은 과제를 해결해야 한다. 또한 시범사업에서부터 상용화까지를 고려한 장기적인 계획이 필요하다. 각국의 영구에 의하면 파이프라인 네트워크를 실제로 건설하기 이전에 CO₂ 저장소에 대한 검토가 필요하며, 파이프라인의 안전성과 안전규정을 일반인이 신뢰할 수 있도록 해야 한다.

○ CO₂ 수송 네트워크를 어디에 어떻게 구축할 것인지가 확실하지 않은 단계에서 두자리를 예측하는 어렵다. 그러나 CO₂ 수송시스템의 최적화를 통해, CO₂ 발생원에서 저장소까지의 평균거리를 산출하면 파이프라인 수송비용을 추산할 수 있다.

○ 전문가들의 분석에 의하면 2050년까지 세계 CO₂ 수송량의 50% 이상을 담당할 것으로 예상되는 미국, 중국, EU의 3개 지역이 2050년에 매일 수송해야 할 CO₂ 물량은 1,150~1,450만 톤에 이르게 전망하고 있다.

○ 또한 2030년까지의 CO₂ 파이프라인 수요는 70,000~120,000km.

2) 단기적으로는 선박 및 기차를 이용한 수송도 가능하며, 특히 CO₂ 저장용량의 개발이 어려운 일부 지역에서는 이러한 방법이 효과적일 수 있다.
2050년까지는 200,000~360,000km가 추산되고 있고, 그 중 미국과 중국 및 EU가 2030년까지 33,000~55,000km, 2050년까지 80,000~142,000km를 차지하여 전체의 39~47%를 담당할 전망이다.

○ 또한 향후 10년 동안 세계적으로 약 100개의 CCS 사업에서 연간 3억 톤의 천연가스를 수송하기 위해서는 10,000~12,000km의 파이프라인 건설이 필요하며, 그 중 약 6,000km는 미국, 중국 및 EU에 설치될 전망이다.

○ 2020년까지 CO2 파이프라인의 총 투자비는 140~150억 달러로 추산되며 지역별 투자비율은 OECD 북미 37%, OECD 유럽 12%, OECD 태평양 5%, 중국/인도 20%, 비OECD 국가 26%로 전망된다. 또한 2050년까지는 5,500억~1조 달러의 투자비용이 추산된다.

<그림 3-5> CO2 수송 파이프라인의 지역별 투자비 전망(3)

2020년까지의 투자비(140~150억 달러) 2050년까지의 투자비(5,500억~1조 달러)
○ IEA는 2020년 및 2050년까지 설치될 CO₂ 파이프라인의 개수와 길이 및 투자비를 <표 3-2>와 같이 분석하고 있다.

<표 3-2> 세계의 CO₂ 파이프라인 길이 및 투자비 전망

<table>
<thead>
<tr>
<th></th>
<th>2020년까지 CO₂ 파이프라인 개수</th>
<th>2020년까지 길이(km)</th>
<th>2010~2020년 투자비(10억 달러)</th>
<th>2050년까지 CO₂ 파이프라인 개수</th>
<th>2050년까지 길이(km)</th>
<th>2010~2050년 투자비(10억 달러)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD NA</td>
<td>25~30</td>
<td>2,800~3,500</td>
<td>5.5</td>
<td>250~450</td>
<td>38,000~65,000</td>
<td>160</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>10~15</td>
<td>1,200~1,600</td>
<td>1.8</td>
<td>125~220</td>
<td>20,000~35,000</td>
<td>70</td>
</tr>
<tr>
<td>OECD Pacific</td>
<td>5~7</td>
<td>700~850</td>
<td>0.8</td>
<td>110~200</td>
<td>17,000~31,000</td>
<td>70</td>
</tr>
<tr>
<td>China & India</td>
<td>17~20</td>
<td>2,100~2,700</td>
<td>3.0</td>
<td>360~660</td>
<td>55,000~100,000</td>
<td>275</td>
</tr>
<tr>
<td>other Non-OECD</td>
<td>20~25</td>
<td>3,900~3,700</td>
<td>3.8</td>
<td>460~840</td>
<td>70,000~130,000</td>
<td>250</td>
</tr>
<tr>
<td>World</td>
<td>77~97</td>
<td>10,700~12,350</td>
<td>14.9</td>
<td>1,305~2,370</td>
<td>200,000~361,000</td>
<td>825</td>
</tr>
</tbody>
</table>

다. CO₂ 저장의 투자비 전망

○ CO₂가 불포화되어 있는 심해의 염분 층은 장기적으로 안전하게 CO₂를 저장할 수 있는 방안이다. 그러나 아직까지는 심해 염분 층의 정확한 상태나 규모 및 개발비 등이 조사되어 있지 않으며, 또한 CO₂ 주입 가능성과 저장된 CO₂를 재추출하여 사용할 수 있는 방안 등에 대한 연구가 필요하다.
○ 국제사회의 시나리오에 의하면 2020년까지는 12억 톤의 CO2 저장용량이 개발되어야 하고, 2050년까지는 1,450억 톤 이상의 저장용량이 준비되어야 한다. 최근의 조사에 의하면 지구상에는 이론적으로 약 8~15조 톤의 CO2를 저장할 수 있는 지층구조가 존재하므로 CO2 저장용량이 충분하다\(^{(13)}\).

○ 심해저암염층의 상태와 저장용량이 확실하지 않아 투자비와 저장비용 산출에 큰 불확실성이 남아 있다. 현재의 연구결과는, 25년간 매년 500만 톤의 CO2를 저장할 수 있는 CO2 저장비용은 2020년까지 8~56억 달러가 예상되고, 2050년까지는 880~6,500억 달러가 소요될 전망이다.

<그림 3-6> CO2 저장의 지역별 투자비 전망\(^{(3)}\)

<table>
<thead>
<tr>
<th>2020년까지의 투자비(8~56억 달러)</th>
<th>2050년까지의 투자비(880~6,500억 달러)</th>
</tr>
</thead>
</table>

○ 2050년까지 세계가 목표로 하고 있는 1,450억 톤의 CO2 저장량은 이론적인 CO2 저장용량의 10%만을 사용할 수 있다고 가정
하더라도 사용 가능한 저장용량의 9% 수준에 불과하다.

<표 3-3> 세계의 CO₂ 저장용량 및 투자비 전망(3)

<table>
<thead>
<tr>
<th>OECD 국가</th>
<th>이론적 CO₂ 저장용량 (10억톤)</th>
<th>2020년까지 CO₂ 저장 용량 (백만톤)</th>
<th>2010~2020년 CO₂ 저장 투자비 (10억 달러)</th>
<th>이론용량의 10% 사용 가정 하에서 사용비용 (%)</th>
<th>2050년까지 CO₂ 저장 용량 (백만톤)</th>
<th>2010~2050년 CO₂저장 투자비 (10억 달러)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD 유럽</td>
<td>2,170~4,650</td>
<td>520</td>
<td>0.3~2.3</td>
<td>8%</td>
<td>38,100</td>
<td>23~170</td>
</tr>
<tr>
<td>OECD태평양</td>
<td>120~940</td>
<td>170</td>
<td>0.1~0.8</td>
<td>17%</td>
<td>15,600</td>
<td>10~70</td>
</tr>
<tr>
<td>OECD마을</td>
<td>800~900</td>
<td>130</td>
<td>0.1~0.6</td>
<td>16%</td>
<td>14,300</td>
<td>8~65</td>
</tr>
<tr>
<td>중국&인도</td>
<td>1,520~3,020</td>
<td>170</td>
<td>0.1~0.8</td>
<td>12%</td>
<td>37,500</td>
<td>23~170</td>
</tr>
<tr>
<td>비OECD국가</td>
<td>3,480~5,990</td>
<td>250</td>
<td>0.2~1.1</td>
<td>7%</td>
<td>39,100</td>
<td>24~175</td>
</tr>
<tr>
<td>세계 합계</td>
<td>8,690~15,500</td>
<td>1,240</td>
<td>0.8~5.6</td>
<td>9%</td>
<td>144,600</td>
<td>88~650</td>
</tr>
</tbody>
</table>
제 4장

CCS기술의 진척현황

1. CCS기술의 전망

○ 1990년대 이후부터 지구온난화와 기후변화에 대한 인식이 세계적으로 확산되면서 CO₂ 감축대책이 국제사회의 중요한 과제가 되고 있다. 또한 화석연료 기반의 에너지체제에서 CO₂ 감축기술의 중요성이 새롭게 인식되고 있어 세계 각국은 CCS기술의 실증과 보급을 위한 투자를 증가시켜나가고 있다.

○ CO₂를 배출하는 산업공정에 어떤 CCS기술을 채택해야 하는지 결정하기 위해서는 다양한 인자들을 고려해야 한다. CO₂ 발생원(배출가스의 운도, 압력, 농도 및 종류), 연료의 종류, CO₂ 회수비율, 공장부지, CCS기술의 현황과 기술 발전속도, CCS기술의 적용 가능 여부 등에 대한 고려가 필요하다.

○ CCS기술에서 연소 후 CO₂ 포집기술로는 아민계 흡수제를 이용한 화학흡수법이 가장 효율적이라고 평가되고 있다. 이 기술
은 흡수된 CO\textsubscript{2}를 탈기하기 위한 에너지 소모가 크고 설치비와 운전비가 과다한 단점이 있지만 CO\textsubscript{2} 흡수율이 높기 때문에 재생계에서 가장 주목받고 있다. 따라서 세계 각국은 화학흡수법을 중심으로 CO\textsubscript{2} 포집기술을 개발하고 있다.

<표 4-1> 세계 각국의 CO\textsubscript{2} 포집기술 개발현황

<table>
<thead>
<tr>
<th>구분</th>
<th>수행기관</th>
<th>연구개발 동향</th>
</tr>
</thead>
</table>
| 화학흡수법 (아인범) | 일본 산시 전력 MIH | 1994년 호사카 600Nm3/h급 완성형 플랜트 설치
| | 일본 도공전력 Hitachi 제조소 | 1994년 호쓰카 석탄/중유 환형관소 발전소에 1,000Nm3/h급 설치
| | 캐나다 Regina대학 | 농업 1.77m 흡수관 설치, 신 흡수제 연구 수행
| | 노르웨이 Norsk Hydro | 1998년부터 1,200MW급 EOR 플랜트에 적용 연구
| | 노르웨이 Statkraft | 1997년부터 400MW급 NGCC 플랜트 적용, 아핀 흡수제 개발
| | EU TNO | 흡수제를 중전한 중공계 흡수막 적용 연구, 운영성 공급수, 흡수화학적 플랜트 설치 중
| | 미국 ORR | CO\textsubscript{2} 흡수, 흡수 및 섭원에 대한 연구비용의 60% 지원
| | 미국 NETL | MEA를 개발한 흡수제 연구

○ 그러나 화학흡수법은 탈기열에 의한 황수제의 열화와 증발, 흡수물 부산물에 의한 장치의 부식 등의 문제점으로 인해 2차 오염 등의 많은 부작용이 발생할 수 있으므로 아인계 화학 흡수법은 소규모 시설에 단기적으로 적용되고 있는 추세이다.
○ 이와 같은 관점에서 앞으로는 막 분리법의 CO₂ 포집기술이 상당한 주목을 받을 것으로 평가되고 있다. 그러나 연소 전 CO₂ 포집기술과 순 산소 연소기술은 아직까지 기술적 전망이 불확실한 상태이기 때문에 미래를 위한 기술이라고 할 수 있다.

○ 예를 들면, 천연가스복합발전의 경우는 주원료인 메탄에 많은 양의 수소가 존재하므로 순 산소 공정을 이용하면 가격이 비싼 산소를 많이 사용해야 한다. 따라서 순 산소 공정보다는 연소 전 기술이 유리하다고 할 수 있다.

○ 결론적으로 기후변화에 대응하기 위한 CO₂ 감축대책이 시급한 상황에서는 CO₂ 저감에 가장 효과적이고 상대적으로 비용이 저렴하며 기술적으로 앞서 있는 CCS기술이 우선적으로 보급될 것으로 전망된다.

2. CCS 프로젝트 개발현황

가. 산업 분야의 CCS 프로젝트 개발현황

○ CCS기술 중에서 CO₂ 수송기술은 기존의 천연가스 수송기술을 그대로 이용할 수 있으므로 거의 상용화되어 있다고 할 수 있
으나 CO₂ 포집 및 저장기술은 아직까지 설증 및 시범단계에 있어 상용화까지는 10여년이 더 걸릴 전망이다.

○ 발전시설에 대한 CO₂ 대량 포집기술은 시범프로젝트를 통한 설증이 거의 완료단계에 있으며, 다수의 시범프로젝트들이 현재 진행되고 있다. 그러나 일부 CO₂ 포집기술에서는 축매금융 확보 등의 해결해야 할 과제들이 남아 있어 아직까지는 기술개발단계에 있다고 할 수 있다.

○ 또한 CO₂ 저장기술의 경우는 유전에서 CO₂ 지중저장과 석유회수증진(EOR: Enhanced Oil Recovery)을 병행하는 기술의 상용화는 어려움이 없는 것으로 연구되고 있지만 염대수층이나 폐유전-폐가스전 등에 CO₂를 대량으로 지중 저장하는 기술은 아직까지 시범프로젝트 단계에 있다.

○ 특히, 대량의 CO₂를 포집, 수송 및 저장하기 위한 대규모 CCS 프로젝트를 연계시켜 수행한 경험이 아직까지 없기 때문에 CCS기술의 본격적인 상용화까지는 10여년이 더 걸릴 것으로 전망되고 있다(19).

○ 산업 분야의 CO₂ 포집기술 현황

- CO₂ 포집기술에서 현재 상용화가 가장 기대되고 있는 분야는 발전 분야이며, 발전 분야 이외의 산업 분야별 CO₂ 포집
기술의 성숙시기는 <표 4-2>와 같다.

<표 4-2> 발전 분야 이외의 산업 분야별 CO₂ 포집기술의 성숙시기

<table>
<thead>
<tr>
<th>산업 분야</th>
<th>기술부문</th>
<th>CO₂ 포집기술의 성숙시기</th>
</tr>
</thead>
<tbody>
<tr>
<td>고순도 CO₂ 배출원(1)</td>
<td>암모니아</td>
<td>현재 성숙되어 있음</td>
</tr>
<tr>
<td></td>
<td>가스 처리</td>
<td>현재 성숙되어 있음</td>
</tr>
<tr>
<td></td>
<td>천연가스석화</td>
<td>현재 성숙되어 있음</td>
</tr>
<tr>
<td></td>
<td>Fischer-Tropsch 공정 - 석탄가스화</td>
<td>현재 성숙되어 있음</td>
</tr>
</tbody>
</table>

바이오매스 전환	액탄올	2015년
	Fischer-Tropsch 공정 - 바이오매스가스화	2015년
	바이오알칸가스	2015년
	화학적 홌수	2015~2020년
	홍액(black liquor) 가스화	2015~2020년

시멘트	화학적 홌수	2015~2020년
	순산소 연소	2030년
	탄산염 순환(carbonate Looping)	2030년

철강	연소 후 포집 - 용강로	2020년
	순산소 연소 - 용강로	2020~2050년
	가스 직접환원전(DRI: Direct Reduced Iron)	2020년
	FINEX 제출공정	2020~2030년
	HIsarna 제출공정	2030년

정유	탐성가스개발에 의한 수소 생산	현재 성숙되어 있음
	수소가스화 전류물	2015~2020년
	FCC(Fluid Catalytic Cracker)	2020~2030년
	공장열	2020년

* 천연가스 처리, 천연가스/석탄/바이오매스로부터 수소 생산, 산화에틸렌 제조, 석탄액화, 암모니아 생산 등

- 산업 분야의 CCS기술 적용은 비용과 CO₂를 분리·포집하는 기술의 상용화 여부에 달려 있다. 천연가스로부터의 CO₂ 분
리 회수와 천연가스에서 수소를 생산하는 과정 및 석탄액화 처리과정의 CO₂ 분리·회수는 가장 먼저 상용화가 기대되고 있지만 CO₂를 압축 처리하기 이전에 정제(purification)과정의 고도화가 더 필요한 상태에 있다.

- 보일러, 터빈, 용강로, 제철 환원과정, 시멘트 킬론(kilns)의 경우도 수송이 가능한 단계로 넘어가기 위해서는 CO₂ 농도를 더욱 높일 수 있어야 하며, 그러기 위해서는 CO₂ 포집기술의 개선이 필요하다.

○ 산업 분야별 CCS기술의 실증현황

- 고순도 CO₂ 배출원 분야: 천연가스 처리에서 CO₂를 포집하여 염대수층에 저장하는 3개 프로젝트(알제리의 Salah, 노르웨이의 Sleipner 및 Snohvit), 미국 Wyoming의 가스 탈취공장에서 CO₂를 포집하여 Colorado의 폐유전 저장 프로젝트, 미국 North Dakota의 합성가스공장과 캐나다 Saskatchewan 유전에서 CO₂를 포집하여 저장하는 Weyburn-Midale 프로젝트의 5개 프로젝트가 수행되고 있고, 호주의 Gorgon LNG 프로젝트에서도 CO₂의 염대수층 저장을 계획하고 있다.

- 바이오매스 전환 분야: 미국 Kansas의 Arkalon 바이오에탄 올공장에서 배출되는 CO₂의 60%(연간 17~18만 톤)을 포집
하여 Texas의 Booker 유전에 EOR로 저장하는 프로젝트, 미국 Illinois의 Decatur 바이오에탄올 공장에서 연간 100만 톤의 CO2를 포집하여 3년간 Simon Sandstone산의 엽대수층에 주입하는 프로젝트 등이 수행되고 있다.

- 철강 분야: CO2 포집을 위한 비용, 효율, 기술 등이 아직까지 불확실한 상태에 있다. 철강 분야의 CO2 배출량은 생산 현장의 제반공정에 따라 달라진다. 현재 프랑스, 독일, 네덜란드, 스웨덴, 아랍에미리트연합 등의 철강회사들이 CO2 포집기술 실증을 위한 소규모 프로젝트를 진행하고 있다. 또한 EU 15개국의 48개 회사들이 협력하여 연구개발 프로젝트를 진행하고 있다.

- 정유 분야: 노르웨이의 Gassnova, Statoil, Shell 및 Sasol 등
이 열병합발전소 및 정유 분해공정에서 배출되는 가스에서 \(\text{CO}_2 \)를 포집하는 기술을 실증하기 위해 소규모 프로젝트를 진행하고 있다. 또한 Statoil이 정유공장에 열을 공급하는 천연가스 열병합발전소의 \(\text{CO}_2 \)를 포집하는 프로젝트를 계획하고 있지만 정부가 환경영향평가를 이유로 이에 대한 투자 결정을 2016년으로 미루었다. 브라질과 캐나다도 정유시설의 \(\text{CO}_2 \) 포집기술을 실증하기 위한 프로젝트를 진행하고 있다.

나. CCS 프로젝트의 보급 전망

○ 기후변화 방지를 위해 2050년까지 연간 \(\text{CO}_2 \) 배출량의 50% 이상을 감축하기 위해서는 CCS기술의 대량 보급이 절대적으로 필요한 상황이다.

○ 따라서 IEA는 CCS기술의 세계적인 보급을 통해 2050년까지 연간 100억 톤 이상의 \(\text{CO}_2 \) 감축목표를 정하고, 이를 위해 2010~2050년 기간에 1,450억 톤의 \(\text{CO}_2 \)를 포집 및 저장하는 전략을 제택하였다\(^{(3)}\).

○ 또한 IEA는 2050년까지 연간 100억 톤 이상의 \(\text{CO}_2 \)를 감축하기 위해서는 세계적으로 약 3,400개의 CCS 프로젝트가 개발되어
아 할 것으로 보고 있다.

<그림 4-1> 2010~2050년 기간의 CCS기술의 보급 전망(3)

○ 2050년까지 3,400개의 CCS 프로젝트를 수행하기 위해서는 향후 10년 이내에 100개 이상의 CCS 프로젝트를 개발하여 기술을 실증하고 상용화 준비를 완료해야 할 것이다.

○ 2020년까지 100개 이상의 CCS 프로젝트를 수행하여 연간 3억 톤의 CO₂ 배출량을 감축하기 위해서는 약 1,500억 달러의 누적 투자비와 기존 시설에 CCS를 적용하기 위한 약 420억 달러의 추가비용이 소요될 전망이다.
표 4-3 2020년까지 CCS 프로젝트, CO₂ 포집량 및 CCS 비용 전망

<table>
<thead>
<tr>
<th>지역</th>
<th>2010~2020년의 발전부문 CCS 프로젝트 수</th>
<th>2020년도의 CO₂ 포집량 (백만 톤)</th>
<th>2010~2020년의 산업 및 상류부문 CCS 누적비용 (10억 달러)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD 북미</td>
<td>17</td>
<td>77</td>
<td>13.3</td>
</tr>
<tr>
<td>OECD 유럽</td>
<td>9</td>
<td>26</td>
<td>4.8</td>
</tr>
<tr>
<td>OECD 태평양</td>
<td>2</td>
<td>9</td>
<td>2.4</td>
</tr>
<tr>
<td>중화 및 인도</td>
<td>6</td>
<td>13</td>
<td>3.5</td>
</tr>
<tr>
<td>비OECD</td>
<td>4</td>
<td>6</td>
<td>2.1</td>
</tr>
<tr>
<td>세계 합계</td>
<td>38</td>
<td>130</td>
<td>26.1</td>
</tr>
</tbody>
</table>

다. CO₂ 지중저장 프로젝트 현황

○ CO₂ 저장을 위한 지중저장기술은 노르웨이, 미국, 캐나다, 호주 등에서 이미 실용화 단계에 진입하고 있다. 그러나 수심 2,000m 이하의 해저 심층수에 CO₂를 처리하는 해양분사 또는 해양저류 처리방법은 아직까지 초기 연구단계에 있고 기술적 및 환경적 타당성 연구가 더 필요한 설정이기 때문에 중단기적인 활용이 어려울 것이다. <표 4-4>는 현재까지 추진되고 있는 세계의 CO₂ 지중저장 프로젝트 현황을 보여준다.
<표 4-4> CO2 지중저장 프로젝트 현황(19,21)

<table>
<thead>
<tr>
<th>사업명</th>
<th>국가</th>
<th>주입개시년도</th>
<th>일일 주입량 (톤-CO2)</th>
<th>총저장량 (톤-CO2)</th>
<th>저장지 형태</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weyburn(상용)</td>
<td>캐나다</td>
<td>2000</td>
<td>3,000~5,000</td>
<td>2,000만</td>
<td>EOR</td>
</tr>
<tr>
<td>In Salah(상용)</td>
<td>알제리</td>
<td>2004</td>
<td>3,000~4,000</td>
<td>1,700만</td>
<td>가스전</td>
</tr>
<tr>
<td>Sleipner(상용)</td>
<td>노르웨이</td>
<td>1996</td>
<td>3,000</td>
<td>2,000만</td>
<td>염대수층</td>
</tr>
<tr>
<td>Miami-Nagasaki(시험용)</td>
<td>일본</td>
<td>2003</td>
<td>최대 40</td>
<td>10,000만</td>
<td>염대수층</td>
</tr>
<tr>
<td>KIZB(실증용)</td>
<td>네덜란드</td>
<td>2004</td>
<td>100~1,000</td>
<td>800만</td>
<td>EGR</td>
</tr>
<tr>
<td>Frio(시험용)</td>
<td>미국</td>
<td>2004</td>
<td>177</td>
<td>1,600만</td>
<td>염대수층</td>
</tr>
<tr>
<td>Fern Big Valley(시험용)</td>
<td>캐나다</td>
<td>1998</td>
<td>50</td>
<td>200만</td>
<td>ECBM</td>
</tr>
<tr>
<td>Qinshuo Basin(시험용)</td>
<td>중국</td>
<td>2003</td>
<td>30</td>
<td>150만</td>
<td>ECBM</td>
</tr>
<tr>
<td>Yuban(실증용)</td>
<td>일본</td>
<td>2004</td>
<td>10</td>
<td>200만</td>
<td>ECBM</td>
</tr>
<tr>
<td>Recopol(시험용)</td>
<td>폴란드</td>
<td>2003</td>
<td>1</td>
<td>10만</td>
<td>ECBM</td>
</tr>
<tr>
<td>Salt Creek(상용)</td>
<td>미국</td>
<td>2004</td>
<td>5,000~6,000</td>
<td>2,700만</td>
<td>EOR</td>
</tr>
<tr>
<td>Gorgon(상용)</td>
<td>오스트리아</td>
<td>2010</td>
<td>10,000</td>
<td>1,200만</td>
<td>염대수층</td>
</tr>
<tr>
<td>Snohvit(상용)</td>
<td>노르웨이</td>
<td>2007</td>
<td>2,000</td>
<td>500만</td>
<td>염대수층</td>
</tr>
<tr>
<td>Ketzin(실증용)</td>
<td>독일</td>
<td>2007</td>
<td>100</td>
<td>50,000만</td>
<td>염대수층</td>
</tr>
<tr>
<td>Otway(실증용)</td>
<td>호주</td>
<td>2007</td>
<td>160</td>
<td>100,000만</td>
<td>염대수층</td>
</tr>
<tr>
<td>DF-1(상용)</td>
<td>영국</td>
<td>2009</td>
<td>-</td>
<td>800만</td>
<td>염대수층</td>
</tr>
<tr>
<td>DF-2(상용)</td>
<td>미국</td>
<td>2011</td>
<td>-</td>
<td>1,600만</td>
<td>염대수층</td>
</tr>
<tr>
<td>Draugen(상용)</td>
<td>노르웨이</td>
<td>2012</td>
<td>-</td>
<td>700만</td>
<td>염대수층</td>
</tr>
<tr>
<td>FutureGen(상용)</td>
<td>미국</td>
<td>2012</td>
<td>-</td>
<td>200만</td>
<td>염대수층</td>
</tr>
<tr>
<td>Ankleswar(상용)</td>
<td>인도</td>
<td>-</td>
<td>1,200</td>
<td>-</td>
<td>EOR</td>
</tr>
</tbody>
</table>

○ 또한 <그림 4-2>는 현재 진행되고 있거나 계획 중에 있는 세계의 CO2 지중저장 프로젝트의 위치를 보여준다.
3. 각국의 CCS 기술개발 현황

가. 미국

○ 미국은 2030년까지 연간 4억~8억 톤의 CO₂를 감축하는 목표를 세웠으며, 이는 현재 추세에서 2030년의 연간 배출량 20.89억 톤의 19~38% 수준이다. 목표 달성을 위해 미국은 IGCC 공정과 연계하여 연소 전 CO₂ 포집기술을 개발하고 있다.
○ 미국이 개발한 대표적인 석탄가스화 공정으로는 GE Texaco의 공정이 있다. Texaco는 1950년에 이 기술의 첫 상업화 공정을 설치하였고, 이후에도 계속 연구를 수행하여 1983년에 최초로 IGCC를 건설하였으며, 현재는 100여기를 운전 중에 있다.

○ Texaco 공정에서는 중질유, 납사, 폐유, 코크스, 중질전사유, 석탄 등의 연료를 처리하고 있으며, 1994년 이후부터 독성폐기물, 오폐수 슬러지, 스캐프 타이어(scrap tyre), 폐플라스틱 등의 처리가 가능하도록 기술을 개선하였다.

○ 미국은 교토의정서 이후의 새로운 국제 온실가스 감축대책과 기후변화협약에 대비하기 위해 에너지부(DEE) 주도로 2000년부터 청정석탄기술을 개발하고 있다. 약 57억 달러가 투자되는 FutureGen 프로그램에서는 2015년까지 CCS기술이 적용되는 275MW급 IGCC 발전소의 건설과 운전을 목표로 하고 있다.

○ 또한 IGCC와 연료전지를 결합하여 전력 및 화학원료를 동시에 생산할 수 있는 석탄가스화/연료전지복합발전(IGFC)을 개발하고 있으며 IGFC에서도 연소 전 CO2 포집기술을 적용하기 위해 관련 연구를 지속하고 있다.

○ 연료를 연소하기 전에 합성가스 중의 CO2를 포집하기 위한 공정은 연소 후 포집공정과 마찬가지로 액상 흡수법, 고체 흡수법(흡착법), 막분리법, 하이드레이트법 등이 있다. 일부 상용화
가 진행된 액상 흡수법의 대표적인 공정에는 UOP사의 Selexol 공정, Kerr McGee/ABB Lummus사의 아민공정, activated MDEA공정, Rectisol공정, Purisol공정, Benfield공정 등이 있다.

○ 1970년대 후반부터 상용화된 이 공정들은 초기에는 가스 중 산성성분을 제거하기 위한 목적으로 사용되다가 연소 전 CO2 포집기술에도 응용되었으며 높은 산성성분 제거율과 공정 제어가 쉽다는 장점 때문에 IGCC, 석탄액화(CTL: Coal to Liquid), 가스액화(GTL: Gas to Liquid) 등에 상용화되고 있다.

○ 그러나 액상 흡수공정은 저온 조업에 따라 열손실이 높기 때문 에 이를 극복할 수 있는 기술개발이 필요하다. 또한 막분리법 과 하이드레이트법은 이론적으로 높은 제거율과 공정효율을 달 성할 수 있으나 아직까지는 실험실 수준의 기술에 머물러 있다.

○ 따라서 현재 연소 전 CO2 포집기술 중에서 미국이 집중적으로 개발하고 있는 기술은 CaO 등을 이용한 고체 흡수법이다.

- 미국 Airproduct사는 1995년부터 SERP의 메탄-수중기 개질 반응과 CO2 포집을 연계하는 연구를 해왔다. 2000년의 발표 자료에 의하면 SERP는 고온 수중기개질반응(800~1,000℃) 을 중온(400~500℃)으로 낮출 수 있고 90% 이상의 고농도 수소를 얻을 수 있는 등의 장점들이 있다.
- 현재 설비규모는 원료가스 용량 기준으로 147kmol/hr-m² 수준이며 1,000회의 반복운전이 가능하다. 공정단계는 고압에서의 동시 반응/분리단계, 감압단계, 수증기/수소 주입 및 감압단계(흡수제 제생), 수증기/수소 이용 재 가압단계(촉매 활성화 및 온도조건 충족)의 4단계로 구성되어 있다.

○ 미국에서 고체흡수제의 연소 전 CO₂ 포집기술을 연구하고 있는 Lehigh대학은 2005년 5월부터 국립에너지기술연구소(NETL)의 과제 수행을 통해 WSR/CO₂ 회수의 동시 반응을 위한 단일 반응기를 개발하였다(22). 고온 수성가스전환반응 촉매에 적합한 CO₂ 회수를 위한 고체흡수제로는 K₂CO₃/Hydrotalcite를, 중온 반응 촉매에 적합한 고체흡수제로는 Na₂O/Alumina를 선정하여 개발 중이다.

나. 일본

○ 일본은 1970년대 초에 Sun-shine 프로젝트를 통해 석탄가스화 및 IGCC 연구를 추진하였다. 1986년에는 신에너지·산업기술 종합개발기구(NEDO)의 주관 하에 9개 전력회사, 전원개발, 전력중앙연구소의 11개 법인이 참여하여 "IGCC기술 연구조합"을 발족시켰다.
○ CO₂의 흡수 분리반응을 위한 2톤-CO₂/일 규모의 파일럿 장치를 만들어 운용 중이며, IGCC에 대해서는 석탄 처리량 2,000톤/일을 목표로 현재 200톤/일의 플랜트를 시험 운전 중에 있다.

○ 1994년부터 현재까지 CO₂ 원천분리 유동층 가스연소기에 대한 기초연구들(금속 산소 carrier 입자 최적제법, TGA 및 고정층 반응기에서의 반응특성, 순환유동층 조건에서의 수력학적 기본 모델)을 수행 중에 있고 열 이용 공정해석을 통해 기존 가스연소기와의 경제성을 비교하였다. 또한 석탄가스화기에 연계된 공정들에 대한 경제성 검토를 마친 상태이다.

○ 한편, Mitsibishi중공업에서는 2007년부터 250MW급 IGCC 시범 플랜트를 운전하고 있다. 이 플랜트의 효율은 42%이며 1일 1,700톤의 석탄을 처리할 수 있고 연소배기가스에는 5ppm 이하의 NOx와 8ppm 이하의 SOx가 배출되고 있다.

○ 일본은 IGCC 기술개발에서 상당한 성과를 올리고 있으나 연소 전 CO₂포집기술의 수준은 그렇게 높지 않다. 고체흡수제에 대
해서는 Toshiba사가 개발하고 있는데 주로 Lithium Silicate, CaO, MgO와 같은 다양한 CO₂ 회수용 고체흡수제를 수성가스 전환반응에 아닌 메탄-수증기 개질반응과 연계하여 고농도의 수소를 생산하는 기술을 연구하고 있다.

○ 일본은 2015년까지 NEDO 및 지구환경산업연구기술기구(RITE) 주도로 습식 아민 CO₂ 포집기술을 2015년까지 상용화 목표로 실증연구를 수행 중이며 이 계획의 일환으로 2009년 5월에는 29개사가 출자한 세계 최초의 CCS 전문 민간기업인 “일본 CCS 주식회사”를 출범시켰다.

다. 중국

○ 중국은 자체적으로 개발한 ICCT Gasifier를 이용하여 2004년 Shandong에 750톤/일, 2005년 Yankuang에 1,150톤/일 x 2기의 설비를 건설하였고 3,000톤/일 규모의 장치를 개발하고 있다.

○ 중국에서는 건조회분 가스화장치를 이용한 석탄가스화기술이 널리 상용화되어 있고 또한 고정층 가스화장치를 이용한 무연탄가스화를 통한 합성가스 제조기술을 상용화하여 1,000기 이상을 보급하였다.
○ 중국은 최근에 IGCC 및 CCS기술을 개발하기 위한 GreenGen 프로그램을 진행 중에 있으며 200MW급의 IGCC 및 CO₂ 저중 저장 연구를 추진하고 있다.

리. EU 및 기타

○ EU는 2020년까지 “CCS 상용화, 화력발전소의 CO₂ 배출량 Zero”를 목표로 설정하고 있으며 2015년까지 10~20개의 대규모 CCS 실증사업 수행에 120억 유로를 지원할 계획이다. 또한 제7차 EU 기본프로그램에서는 ZEP(Zero Emission Plant) 프로젝트를 통해 IGCC기술의 상용화를 추진하고 있다.

○ 노르웨이는 1992년부터 북해의 원유 및 가스 채취를 위한 해상 플랫폼을 대상으로 CO₂ 분리 회수연구를 수행하고 있다. Fluor Daniel사의 공정을 적용하여 연구하고 있는데 해상 석유주산 등의 조선 산업이 발달한 우리나라와 많은 유사점을 찾을 수 있어 그 연구방향과 결과에 주목할 필요가 있다.

○ 캐나다에서는 Saskatchewan 미분탄연소발전소에서 1987년부터 모노에탄올아민(MEA: MonoEthanolAmine) 흡수제를 사용하는 파일럿 규모의 CO₂ 분리 회수시설(4톤/일)을 운영 중이다.
제5장

CCS 관련법 및 제도

1. CCS 보급의 고려사항(3)

가. 지리적 고려사항

○ CO₂ 대량 배출업체는 공단이나 도시 근교에 위치해 있다. 일반적으로 CO₂ 저장소는 이들 배출업체로부터 300km 이상 떨어져 있는 경우가 많으므로 CCS기술의 보급을 위해서는 CO₂ 배출원과 저장소 사이의 지리적 차이점을 고려해야 한다.

○ IPCC는 2050년까지 세계 CO₂ 배출량의 약 20~40%를 CCS기술로 감축할 수 있을 것이며, 특히 발전 분야는 30~60%를 CCS로 감축할 수 있을 것으로 전망하고 있다(23). 따라서 CCS 보급 초기에는 발전소들을 묶어 네트워크를 형성하여 CO₂ 수송과 저장을 추진하면 경제성을 높일 수 있다.
나. 대중의 참여

○ CCS와 같은 신기술의 도입에는 대중의 이해와 지지를 얻는 것이 중요하다. 특히 CO₂를 포집, 수송 및 저장하는 프로젝트가 시행되는 지역주민들은 CCS에 따른 건강, 환경, 법 및 제도 등에 대해 큰 관심을 가질 것이다.

○ 이들 사항에 대해서는 지역주민들에게 투명한 방식으로 정보를 제공해야 한다. 또한 대중의 지지를 얻기 위해서는 정보를 전달하는 것 이외에도 CCS에 대한 올바른 인식을 할 수 있도록 교육을 실시하는 것도 필요하다.

○ 또한 대중의 이해와 지지 얻는 데에는 CCS기술과 보급에 따른 영향뿐만 아니라 기후변화에서 온실가스의 역할, 온실가스 감축의 당위성, 비용편익 측면에서 지역사회에 미치는 영향 등에 관한 정보를 제공할 수 있어야 한다.

다. 법과 제도의 정비

○ CCS기술의 보급에는 보건과 안전 및 환경 보호를 위한 법과 제도의 정비가 중요하며, CO₂ 저장소를 관리하는 전문 인력의
육성도 필요하다. 또한 CCS기술의 실험을 위한 시험 프로젝트에 대해서는 유연하고 실용적인 규제를 할 필요가 있다.

○ 이들 문제의 해결을 위해서는 각국 정부가 자원 개발이나 환경 영향과 관련된 기존의 규제제도를 수정해야 하며, 특히 기술 발전을 위해서는 첫 시험 프로젝트에 대해 특별한 취급을 할 필요가 있다. 또한 CCS기술의 시험 프로젝트와 상용화는 시간이 많이 걸리고 많은 투자비가 들여간다는 점을 고려해야 한다.

○ 국제사회는 CCS기술의 법적 제도를 위해 2006년에 런던의정서를 수정하여 CO₂ 해양저장을 허용하였고, 2007년에는 북동대서양 해양환경보호협약(OSPAR협약)을 수정하여 비슷한 내용을 도입하였다. 그러나 OSPAR협약의 수정사항은 아직까지 시행되지 않고 있으며, 런던의정서도 CO₂ 수송의 국경 통과를 아직까지 도입하지는 않고 있다(3).

○ 또한 많은 국가들이 CCS기술의 보급을 위해 포괄적인 규제제도를 개발하고 있으며, 특히 CCS 활동을 위한 관련법과 인허가 제도, 규제기관 설립, 시험 프로젝트에 대한 재정 지원 등을 수행하고 있다.

○ 예를 들면, 유럽연합은 2008년에 CCS 관련 법령을 제정하고 CO₂ 지중저장을 위한 규제제도를 수립하였으며, 호주의 경우도 CO₂ 저장을 위한 포괄적인 법령을 제정하고 CCS 규제제도를
수립하였다. 또한 미국, 캐나다, 노르웨이, 일본 및 우리나라가 CCS 관련법과 규제제도를 마련 중에 있다.

2. CCS 관련법과 제도의 개발현황

가. 기존 규제법의 재검토

○ 일반적으로 산업 분야의 CO₂ 감축은 연료 전환, 에너지효율 개선, 재생에너지 이용 확대 등을 통해 이루어지고 있는데 화석 연료 산업구조를 유지하면서 CO₂를 감축하기 위해서는 CCS기술의 조기 활용이 불가피하다.

○ 따라서 많은 국가들이 CCS기술의 보급을 촉진하기 위한 법과 제도를 정비 중에 있다. 그러나 현재 세계 각지에서 실시되고 있는 CCS 실험 프로젝트에 대해서는 기존 법에 따른 규제를 받는 것이 불가피하다. 대부분의 경우에 기존 법을 통해서도 CCS기술을 규제할 수 있지만 일부 경우에는 기존 법이 적절하지 않아 문제가 되는 경우가 있다.

○ 현재의 CCS 활동에는 석유와 가스, 광물, 폐기물, 보건, 안전성, 소유권, 수송, 지하수, 환경영향평가 등의 수많은 법들이 적용
그리고 있는데, 기존 법을 가장 효율적으로 또한 적절하게 적용받을 수 있는 방안을 찾아야만 한다.

○ 따라서 CCS를 위한 포괄적인 법과 제도가 수립될 때까지 기다리는 것보다는 해당지역 특유의 조건 하에서 신속하게 실증 프로젝트를 수행할 수 있는 방안을 찾아야 하는 실정이다.

○ IEA는, 1) CCS 실험 프로젝트를 수행하기 위한 기존 법의 재검토를 OECD 국가는 2011년까지, 비OECD 국가는 2015년까지, 나머지 비OECD 국가는 2020년까지 실시하고, 2) CCS 프로젝트의 주요 참여자들이 전문가 자문을 통하여 기존 법의 개정방향을 도출할 것을 제안한 바 있다(3).

나. 포괄적 CCS 규제체제의 개발(19)

○ CCS 실험 프로젝트의 규제를 위한 기존 법의 재검토와 수정이 이루어진 이후에는 상용 CCS의 보급이 보건과 안전성에 미치는 영향 등을 포함하는 포괄적인 CCS 규제체제를 개발하는 것이 바람직하다.

○ 각국 정부는 CCS 보급에 장애가 되는 기존 법과 규정을 개정하기 어려울 경우에는 CCS를 위한 포괄적인 규제체제를 수립
해야 한다. IEA는 2020년까지 모든 국가가 CCS 규제체제를 확립토록 제안하고 있다(3).

d. 국제법 문제

○ CO₂ 수송과 저장 방법에 대한 지침과 감시 및 검증을 위한 국제법이 확립되어야 한다. 이를 위해서는 런던의정서와 관련 조약들을 참조하여 CO₂ 수송 및 저장을 위한 국경 통과 등의 문제들을 해결해야 할 것이다.

○ IEA는, 1) IPCC의 인벤토리 지침서(Inventory Guidelines)를 참조하여 CO₂의 감시와 검증을 위한 국제표준을 개발하고, 2) 국제해사환경조약의 범위 내에서 CO₂ 수송의 국경 통과를 허용할 것을 제안하고 있다(3).

라. 산업 분야를 위한 CCS 인센티브제도(19)

(1) 재정지원 및 세금감면

- 현재 여러 국가들이 CCS기술의 산업 적용을 재정적으로 지원하기 위해 CCS 펀드를 설립하여 운용하고 있다. 여기에는
투자비의 직접적인 재정지원, 세금감면, 탄소배출권가격의 보장, 금융융자 등의 대책들이 포함되어 있다.

- IEA는 2020년 이후의 CCS 보급 초기단계에 개발도상국의 CCS 투자비를 재정적으로 지원하기 위한 비용이 약 260억 달러가 될 것으로 추산한 바 있다.

(2) 탄소배출권 또는 탄소세

- CCS기술의 보급을 촉진하기 위한 인센티브 대책으로 가장 주목을 받는 것은 탄소배출권거래제를 시행하고 또한 탄소 배출권가격을 안정적으로 유지하는 것이다.

- 탄소 배출량을 규제하고 허용량 이하로 CO₂를 감축할 실적에 대해서는 시장에서 판매하여 수익을 얻도록 하는 탄소 배출권거래제를 통해 CO₂ 감축활동과 CCS 보급을 촉진할 수 있다. 또한 CO₂ 배출량에 대해 탄소세를 부과하고 허용량 이하의 CO₂ 감축실적에 대해서는 세금감면을 해주는 방식을 통해서도 CCS 보급을 촉진할 수 있다.

- 그러나 탄소배출권이나 탄소세는 아직까지 시범적인 실시에 머물러 있기 때문에 CCS기술의 보급을 촉진할 수 있는 수준으로 충분한 인센티브를 제공할 수 있는지는 앞으로 검증 해야 할 사항이다. 따라서 현재시점에서 이들 제도는 CCS
보급을 위한 중기적인 전략수단이라고 할 수 있다.

- 예를 들면, 노르웨이는 강력한 탄소세정책을 실시하고 있다. 1991년에 CO₂ 톤당 35달러의 탄소세를 부과하기 시작하였고, 현재 탄소세를 CO₂ 톤당 50달러로 인상하였다. 노르웨이의 석유업계는 유럽연합의 탄소배출권거래제(EU ETS)에 포함되어 있기 때문에 노르웨이의 Sleipner 및 Snohvit CO₂ 저장 프로젝트는 이중으로 인센티브를 받고 있는 샘이다.

- 또 다른 인센티브제도에는 영국이 도입한 최저탄소가격제 (CPF: Carbon Price Floor)가 있다. 이는 탄소배출가격의 최저가격선을 보장하는 제도이며, 이를 통해 CO₂ 감축기술의 보급을 촉진할 수 있다. 최저가격선은 2020년까지는 CO₂ 톤당 30파운드, 2030년까지는 70파운드이다.

(3) 행정명령과 표준

- 표준을 제정하고 기술을 개발토록 강제하는 명령 등의 규제를 통해서도 CCS 보급에 대한 인센티브를 제공할 수 있다. 예를 들면, 정부는 산업부문 또는 특정시설에 대해 일정한 조건을 충족해야만 가동 인허가를 내주는 방법 등을 통해 CCS기술의 적용을 유도할 수 있다.

- 천연가스 처리, 수소 생산, 발전, 철강 등과 같이 CO₂를 대
량 배출하는 시설(또는 산업)을 대상으로 배출량을 규제하는 방법을 통해서도 CCS기술의 보급을 촉진할 수 있다. 그러나 이러한 행정명령이나 표준의 시행에는 분야별 형평성을 위해 유연한 방식의 적용이 요구된다. 또한 행정명령이나 표준은 기술이 상용화되기 이전에는 실시할 수 없는 대책들이다.

3. CCS 보급 확대를 위한 국제협력

가. 기존 국제협력의 확대

○ 국제적 기술협력은 리스크 공유, 기술개발 촉진, 우선 개발사항 선정 등의 긍정적인 효과가 높다. CCS기술은 향후 10년 이내에 기술을 실증해야 하고 이후에 급속한 보급이 요구되는 사항이기 때문에 국제협력의 필요성이 높다. 특히 현재 CCS기술 개발은 몇몇 선진국을 중심으로 이루어지고 있기 때문에 보급확산을 위한 국제협력의 의미는 더욱 중요하다.

○ 급속한 보급 확산을 위해서는 신기술의 연구개발 및 실증단계부터 지적소유권을 포함한 기술이전과 국제협력을 확대해나가는 것이 바람직하며, 이를 위해서는 기존의 기술협력뿐만 아니라 새로운 협력 활동을 확대해 나가야 한다.
○ 또한 앞으로 개발도상국의 CO₂ 배출량이 급증할 것으로 전망되므로 개발도상국에서의 CCS 보급은 기후변화 방지차원에서 중요한 과제가 될 것이며, 따라서 이를 위한 기술적 및 재정적 지원이 요구되고 있다.

○ 현재 세계적으로 심어 개의 상용 규모 CCS 프로젝트가 추진되고 있는데 모니터링, 규제방법, 재정 조달계획, 대중의 참여와 지지를 얻는 방안 등에 대한 정보 공유가 필요하다. IEA는, 1) CCS기술의 연구개발 및 실증에 대한 국제협력의 증진, 2) GCCSI, CSLF, IEA GHG 등에 대한 참여국 확대, 3) IEA의 CCS 로드맵의 이행을 제안하고 있다(3).

나. CCS기술의 실증을 위한 기금 증액

○ 상용 규모 CCS기술의 실증과 비용 감소를 위해서는 이를 위한 기금규모를 지금보다 대폭 증액해야 한다. 탄소시장의 CO₂ 배출권가격과 각국의 탄소세는 OECD 국가의 CCS를 위한 추가비용의 절반 정도만 충족시킬 수 있을 것으로 평가되고 있다.

○ 또한 현재의 탄소시장이 안정적이지 않은 점도 CCS 투자의 장애요인이다. 탄소시장의 안정을 위해서는 전철한 규제체제가
필요하다. 현재 OECD 국가들의 CCS 투자규모는 투자수요의 1/4~1/3 수준에 불과하여 민간 투자가 요구되고 있다.

○ 결과적으로, CCS기술의 실증과 보급을 위한 국제사회의 재정 지원 대책은, 1) OECD 국가들이 2020년까지 CCS기술을 실증하기 위한 기금 규모를 연평균 35~40억 달러로 증액하고, 2) CCS 투자비와 리스크를 감수할 수 있는 공공/민간 협력 프로젝트를 확대하는 것으로 요약되고 있다(3).

다. CCS 보급 촉진을 위한 인센티브대책

○ 국제사회의 장기적인 CO₂ 감축대책에는 상용 규모 CCS 보급이 포함되어 있는데, 이를 달성하기 위해서는 CCS기술의 보급 활성화를 위한 재정 지원체제가 필요하다.

○ CCS 보급을 위한 재정 지원체제는, CCS 프로젝트의 CO₂ 감축 실적에 배출권 발급, 배출량 성능표준의 제정을 통해 CCS 적용을 강제, CO₂ 저장에 대한 세금감면, CCS시설에 대한 전기 및 연료 제공 등이 거론되고 있다(13).

○ 특히 IEA는 상용 규모 CCS 보급을 지원하기 위해, 1) 각국이 2012년까지 CCS를 위한 재정적 인센티브를 검토하여 2015년까
지 실시하고, 2) CCS에 따른 추가 비용을 상쇄할 수 있는 수준으로 CO₂ 감축실적에 가치를 부여할 것을 제안하고 있다.

라. CO₂ 수송 및 저장을 위한 지역별 협력그룹의 구성

○ CCS 프로젝트는 파이프라인, 대규모 저장소, 규제체제 등의 인프라 구축에 비용이 많이 들기 때문에 국가 또는 지역 단위로 개발하는 것이 바람직하다. 예를 들면, 노르웨이와 영국은 북해의 해저에 대규모 CO₂ 지중저장소를 건설하기 위해 2005년에 공동으로 실무진을 구성하여 계획을 추진하고 있다.

○ 지역별 CCS 협력그룹의 구성을 위해 IEA는, 1) 2012년까지 CO₂ 수송과 저장을 위한 인프라 구축에 협력할 수 있는 지역들을 찾아내고, 2) 2014년까지 지역별 협력을 위한 체제와 기관을 설립하며, 3) 2020년까지 지역별 협력을 연계하여 국제화할 것을 제안하고 있다(3).

마. 개발도상국으로의 CCS 보급 확대

○ 지구온난화 방지를 위한 CO₂ 배출량 감축에는 CO₂를 대량으로
배출하고 있는 개발도상국의 CO₂ 감축이 중요하며, 이를 위해서는 이들 국가의 CCS 보급을 대폭 확대해야 한다. 특히 선진 국은 CCS 실증 프로젝트에 대한 개발도상국의 참여와 지원을 검토하고 기술이전을 확대해야 한다.

○ 국제사회는 개발도상국의 기후변화 대책을 위해 여러 가지 재정 지원 대책을 설치하고 있는데, 세계은행의 기후투자기금 (Climate Investment Funds), 청정기술기금(Clean Technology Fund), 지구환경기금(Global Environment Facility) 등이 있다.

○ 개발도상국의 CO₂ 감축에 대한 재정 지원을 통해서도 개발도상국을 지원할 수 있다. CO₂ 감축실적에 대하여 재도적으로 재정 지원을 하고 있는 교토의정서의 청정개발체제(CDM: Clean Development Mechanism) 사업이 그러한 사례이다. 그러나 CCS는 아직까지 CDM 사업 분야에 포함되지 않고 있다(24).

○ IEA는 개발도상국의 CCS 투자 지원전략으로, 1) 2020년까지 개발도상국의 CCS 개발에 연평균 15~25억 달러를 투자하고, 2) 기존의 다자간 또는 양국간 재정 지원체제들을 비교분석하여 차이점이 무엇인지를 파악하며, 3) 개발도상국의 CCS를 위한 적절한 재정 지원대책의 개발을 제안하였다(3).
제 6장

국내의 CCS 기술현황 및 개발계획

1. 국가 CCS 종합 추진계획

가. 목적 및 추진과제

○ 정부는 2009년 11월에 교토의정서 이후의 새로운 국제 온실가스 감축체제에 대비하기 위해 2020년까지 온실가스 배출전망치 대비 30%를 감축하는 국가목표를 설정하였다(1). 또한 이를 달성하기 위한 수단의 하나로 CCS기술의 보급을 채택하고 2010년 7월 13일에 국가 CCS 종합추진계획을 발표하였다.

○ 국가 CCS 종합 추진계획의 목적은 “세계 CCS기술 강국으로 도약”하는 것이며, 목표는 “2020년까지 CCS 플랜트의 상용화 및 국제 기술경쟁력을 확보”하는 것이다. 이를 위해 2020년까지 연간 CO2 100만 톤 수준의 CCS 통합 플랜트를 실증하고, 2015년까지 국내에 CO2 저장소를 위한 1~2개의 부지를 선정
할 예정이다. 또한 CCS 처리비용을 CO₂ 톤당 30달러로 낮출 수 있는 원천기술을 개발할 예정이다.

<그림 6-1> 국가 CCS 종합 추진계획의 중장기 로드맵(2)

<table>
<thead>
<tr>
<th>세계 동향</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>교도 의정서</td>
<td>포스트 교도</td>
<td></td>
<td></td>
</tr>
<tr>
<td>설립 규모</td>
<td>5-30MW</td>
<td>100-200MW</td>
<td>500MW(실용화단계)</td>
</tr>
<tr>
<td>기존기술의 적용 (용량화 추진)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>혁신적 기술 개발(경제성 확보)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>비용 추정</td>
<td>80-90$/tCO₂</td>
<td>40-60$/tCO₂</td>
<td>20-30$/tCO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>기술 개발</th>
<th>포집</th>
<th>수송 저장</th>
<th>전환</th>
</tr>
</thead>
<tbody>
<tr>
<td>포집</td>
<td>2세대 기술개발 (0.5MW급)</td>
<td>3세대 포집기술 개발 (포집비용 : 10-25$/tCO₂)</td>
<td>3세대 기술개발 (0.5MW급)</td>
</tr>
<tr>
<td>수송 저장</td>
<td>포집-수송-저장 흐름연구 (0.5MW, 100%분비)</td>
<td>사후관리 및 안전성평가기술</td>
<td></td>
</tr>
<tr>
<td>전환</td>
<td>기초기반연구</td>
<td>혁신적 저장기술개발 (수송저장비용 : 110$/tCO₂)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>실험 실증</th>
<th>제조소 대시</th>
<th>기반 조성</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험실용화</td>
<td>제조소용저장기법별 & & & & & &</td>
<td>제조소 건설 및 관리</td>
</tr>
<tr>
<td>제조소 대시</td>
<td>기초자료조사</td>
<td>저감효과&&</td>
</tr>
<tr>
<td>기반 조성</td>
<td>제조소용저장기법별 & & & &</td>
<td>제조소 건설 및 관리</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>기반 조성</th>
<th>전 & & 개발 & & & & & & & & &</th>
<th>& & & & & & & & &</th>
</tr>
</thead>
<tbody>
<tr>
<td>기반 조성</td>
<td>전 & & 개발 & & & & & & & &</td>
<td>& & & & & & & &</td>
</tr>
</tbody>
</table>

- 65 -
나. 분야별 추진계획

(1) CO₂ 포집기술 분야

○ 혁신적 CO₂ 포집 원천기술 개발

- 목표: 발전, 철강, 석유화학, 시멘트산업 등에 적용할 수 있는 다양한 신개념 포집기술을 4개3) 이상 개발하여 2020년까지 CO₂ 포집비용을 연소 전 포집기술은 톤당 10달러 이하, 연소 후 포집기술은 20달러 이하로 낮추는 것이 목표4)이다.

- 추진전략: 체계적인 연구개발체제를 구축하고, 신개념 포집 기술을 위한 독창적인 연구주제를 발굴 및 지원한다. 또한 발전 분야의 경우, 에너지기술연구원의 연구용 석탄화력발전소(2MW급)를 통해 기술적 타당성 검증(100Nm³/hr 규모)을 하고, 실제 발전소 적용을 통해 개발기술(K₂CO₃, 분리막 등)의 경제성을 평가함으로써 상용화를 위한 실증단계 진입을 최종 검증(2,000Nm³/hr, 0.5MW 시설)한다.

- 또한 검증된 포집기술은 상용화를 위한 파일럿 실증 프로젝

3) 새로운 아미노계 흡수제, 스마트 분리막, 분자게이트 나노제, 자연모사 등.
4) 미국은 2015년까지 CO₂ 포집비용을 톤당 10달러 이하, 일본은 2020년 1,000엔 이하, 유럽은 2020년까지 20유로 이하를 목표로 하고 있다.
대규모 실증 프로젝트

- 파일럿 실증 프로젝트 수행 후 대규모 시설의 설계와 실증을 통해 최적의 상용화기술을 확보할 계획이다. 또한 기술별 시장 성숙도, 산업시설별 적용대상의 차이 등을 고려하여 순차적으로 과제를 참수하며, 2020년까지 100MW 이상의 실증 프로젝트 2개를 완료하여 CCS기술의 상용화를 촉진하고, 국제사회에서의 선도적 위상을 강화하는 것을 목표로 한다.

<그림 6-2> 대규모 CCS 실증 프로젝트의 2단계 추진계획

<table>
<thead>
<tr>
<th>구분</th>
<th>[1단계] 파일럿 실증(10-30MW)</th>
<th>[2단계] 대규모 실증(100-300MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차 실증사업</td>
<td>’10 연소 후 파일럿</td>
<td>’14 기룹충정 설계</td>
</tr>
<tr>
<td>2차 실증사업</td>
<td>’12 연소전 종 파일럿</td>
<td>’16 기룹충정 설계</td>
</tr>
</tbody>
</table>

- 1차 실증사업(2010~2018)에서는 연소 후 포집기술 중에서 기술 검증을 통해 성능평가가 완료된 기술을 대상으로 파일럿 규모(10~30MW)의 실증사업을 추진한다.

- 2차 실증사업(2012~2020)에서는 파일럿 실증 결과를 국내외 전문기관에 의뢰하여 최종 실증 여부를 판단한 후, 석탄가스 화복합발전(IGCC)과 연계된 연소 전 포집기술 등을 대상으로
로 민간 주도로 대규모 실증(100~300MW)을 실시한다.

(2) CO2 수송기술 분야

○ 선박수송

- CCS의 대규모 통합 실증 시에 수송비용의 저감이 가능한 선박수송 방안을 검증하고 관련 산업계의 참여를 유도한다. 특히 국내의 CO2 배출원은 대부분 해안가에 위치해 있고, CO2 실증 저장소의 유력한 후보지는 울릉분지이므로 배출원과 저장소를 연결하는 선박수송 방안을 마련할 필요가 있다.

- 국내의 현대중공업, 삼성중공업, 대우조선해양은 세계의 선 두권 조선회사들이며, 이들 민간회사의 참여를 유도하여 CO2 선박수송기술을 조기에 확보하고 이를 신산업 창출의 계기로 삼는다.

○ 파이프라인수송

- 2020년 이후의 CCS 보급단계에서는 장기간 대규모 CO2를 수송하기 위한 고효율, 고안전, 대용량의 CO2 파이프라인 수송시스템을 설계하고, CO2 유출방지기술을 확보하며, 선박수송과 파이프라인수송을 연계한 국가 CO2 수송 인프라를 설계하여 구축한다.
(3) CO₂ 저장기술 분야

○ 저장소 선정 및 관리

- 저장후보지 선정을 위한 평가: CO₂ 포집기술의 실증 프로젝트에서는 2017년부터 연간 CO₂ 100만 톤, 2019년부터 연간 200만 톤을 포집할 계획이므로 이를 위한 저장소가 필요하다. 따라서 석유공사, 해양연구원, 지질자원연구원 등의 산학연 연구협력 체제를 구축하여 국내 저장탑사자료를 분석하고 추가탐사를 통해 2013년까지 저장후보지의 우선순위를
제시할 계획이다.

- CO₂ 실증 저장소 선정: 2015년까지 대규모 통합 실증을 위한 저장소를 선정하는 계획이다. 2012년에 국토해양부의 발표에 의하면 울릉군의 남서부 해역 대륙붕에는 약 50억 톤의 CO₂ 저장용량을 확인하였고(56), 하부의 일대수층까지 고려하면 대규모 저장용량의 확보가 가능하다. 또한 2017년까지 저장플랜트를 건설하고 이후에 CO₂ 주입과 환경관리에 대한 실증을 추진할 계획이다.

- 대규모 CO₂ 저장용량 확보: 군산, 제주 타격분지 등 연안의 해역별 저장소 탐사를 통해 대규모 지중저장소를 확보할 계획이다. 또한 울상의 대규모 CO₂ 발생원과 연계하여 경제적인 CCS 통합 네트워크 구축을 추진할 계획이다. 천연가스 저장소로 활용 예정인 동해가스전을 CO₂ 저장소로 전환하는 방안도 검토되고 있다.

○ CCS의 통합 실증

- 소규모 통합 실증(CO₂ 1만 톤 규모): 이를 통해 CCS를 위한 핵심기술을 완성하고 현재 운영 중인 0.5MW급 CO₂ 포집시설(하동화력, 건식플랜트)에서 포집된 CO₂를 수송하여 경상분지에 저장할 계획이다. 또한 이를 통해 CCS 프로젝트
전통기술을 확립하고 거동예측, 모니터링, 주입기술 등의 핵심기술과 리스크평가, 경제성평가 모델 등을 확립하여 CO\textsubscript{2} 포집에서 저장까지의 전주기 CCS기술을 완성한다.

- 대규모 통합 실증(CO\textsubscript{2} 100만 톤 규모): 100MW 이상의 대규모 CO\textsubscript{2} 포집시설의 실증과 연계하여 연간 100만 톤 이상의 CO\textsubscript{2}를 저장함으로써 CCS기술의 대규모 통합 실증을 완성한다. 이를 위해 2015년까지 대규모 국내 저장소를 확보하고 2017년까지 저장소를 건설한다.

(4) CCS를 위한 환경관리 및 기반 구축

○ 법과 제도의 정비

- CCS기술의 보급에는 CO\textsubscript{2} 포집, 수송, 저장 등 단계별 처리 시설의 사전 허가, 적정한 처리 여부, 누출 모니터링 및 검증, 법적 책임 확보 등에 관한 제도적인 장치가 필요하다. 따라서 CCS산업의 발전을 저해하지 않도록 관련 법령을 정비하여 법제화하고, 또한 단기적으로 CO\textsubscript{2} 저장기술의 개발 및 관리에 관한 최소한의 규정을 마련해야 한다.

- CCS에 의해 처리되는 CO\textsubscript{2}의 법적 성격은 전문기관의 연구 용역 및 공청회 등을 통해 규정하고, 이를 바탕으로 관련법과 제도의 개선방안을 마련한다. CCS의 대규모 통합 실증을
하기 이전까지 관련법 등의 제도적인 정비를 완료한다. 이를 위해 CO2 포집 및 수송의 허가 및 처리기준을 마련하고, 육상 및 해저 CO2 저장소를 선정하여 조성을 허가하고, 주입 처리기준, 모니터링, 폐쇄 후 사후관리 규정 등을 마련한다.

- 또한 CCS기술의 보급 확산과 민간 참여의 촉진을 위한 유인체계를 구축하기 위해 CCS 투자 촉진 및 민간자금 활용을 위한 조세 및 금융제도를 정비하고 보험제도를 구축하며, 신재생에너지 촉진법 개정 시에 CCS 적용의 우대 근거조항을 마련토록 추진한다.

○ 환경보호기술 개발

- 지중 저장을 위한 탐사 및 평가과정에서 환경보호 관련 데이터베이스를 구축하며, 여기에는 CO2 누출 시에 영향을 받는 대상(지하수, 토양, 육상/해양생태계, 주민 등)의 분포현황과 특성 등을 포함한다. 또한 친환경적 지중저장소의 선정 및 평가를 위한 기법을 개발한다.

- CO2 수송 및 저장 시의 모니터링, 위험성 평가 및 관리기술 개발한다. 이를 위해, 1) CO2 수송 시의 누출 시나리오 개발, 시나리오별 환경영향 감시/예측/복원기술 개발, 2) 육상 지중구조에서의 CO2 누출 시나리오, 기동 예측, 모니터링, 환
경영향 평가 및 리스크 관리기술 개발, 3) 해저 지중저장에서의 CO₂ 누출 시나리오, 해저 거동 예측, 모니터링, 해양환경영향 평가 및 리스크 관리기술 개발 등을 수행한다.

○ CCS에 대한 사회적 인식 제고

- CCS 기술의 실증 및 보급을 위한 사회적 수용성을 제고하기 위해 저장소 탐사, 소규모 포집/수송/저장기술의 실증 등 기술개발 초기단계부터 관련 지자체, 시민단체 및 대중과의 소통을 추진한다.

- 또한 CCS의 환경적 안전성 증명에 관한 교육프로그램을 마련하고, 국내외 CCS 연구개발의 성과에 관한 정보를 제공한다. 이를 위해 대중매체, 강연회, 캠페인 등을 통해 국민과의 대화 프로그램을 추진하고, CCS 체험관 설치 등을 통해 기후변화 대응을 위한 CCS기술의 중요성과 안전성을 홍보하며, CCS기술의 개발성과 및 국내외 동향 등 관련 정보의 지속적인 제공을 통해 국민의 신뢰를 얻을 수 있도록 한다.

○ CCS 기술혁신의 기반 정비 및 인력 양성

- CCS 기술혁신의 촉진을 위한 인프라를 정비한다. 이를 위해 주요국의 CCS 기술개발과 정책동향 및 시장동향을 조사하고, 이를 국가 CCS 기술정책의 수립에 반영하며, 기술혁신
을 위한 산학연 전문가 네트워크를 강화한다.

- CCS 인력수급의 실태조사를 바탕으로 중장기 인력수급을 전망하여 인력양성계획을 수립하며, IEA, GCCSI, RITE(Research Institute of Innovative Technology for the Earth), NETL(National Energy Technology Laboratory) 등의 국제기구 또는 해외연구기관에 전문인력을 장기 파견하는 프로그램을 통해 CCS 관련 글로벌 인재를 육성한다.

- CCS기술 관련 대학과 정부출연 연구기관 및 해외연구기관과의 인력 교류 및 협력연구의 활성화를 도모하여 개방형 인력 교류를 촉진한다.

○ 국제협력의 강화

- IEA/CRLF, GCCSI, 국제해사기구(IMO) 등 CCS 관련 국제 기구에 적극 참여하여 국제동향을 파악하고 국내 기술력을 홍보한다.

- 국제기구에서 추진 중인 국제공동연구 프로젝트에의 참여를 확대하여 기술 선도국과 파트너십을 구축하고, 이를 위해 단기적으로 현재 추진 중인 국제공동연구 프로젝트를 분석하여 비용효과가 가장 뛰어난 프로젝트에 참여를 추진하며, 중장기적으로 장기적인 저장소 확보를 위해 중국, 일본 등 인
접국과의 공동저장 협력 프로그램의 개발을 추진한다.

d. 투자목표 및 기대효과

(1) 투자목표

- 2010∼2019년 기간에 약 2조 3,000억원 규모의 투자가 필요 하며, 정부가 1조 2,000억원(52%), 민간이 1조 1,000억원 (48%)을 투자하도록 한다. 또한 대규모 포집기술의 실증은 정부가 20%, 민간이 80%를 부담토록 하며, 대규모 저장기술 의 실증은 정부가 60%, 민간이 40%를 부담토록 한다.

- 분야별 투자는, 포집 원천기술 개발, 포집/저장 통합연구, 전환 원천기술 개발 등의 차세대 기술개발에 2,400억원 (10%), 대규모 포집기술의 실증, 저장소 선정, 대규모 저장 기술의 실증 등 상용화를 위한 실증에 1조 9,200억원(84%), 전주기 환경관리, 사회적 수용성 제고, 국제협력 및 인력양 성 등 환경관리 및 기반구축에 1,400억원(6%)을 투입한다.

(2) 기대효과

- CCS 기술개발 및 상용화 추진으로 2030년까지 약 100조원
의 누적매출과 10만 명 이상의 일자리 창출 및 연간 3,200만 톤의 CO₂ 감축이 기대되고 있다.

<그림 6-4> CCS 기술개발 및 보급의 기대효과

2. 국내 기술현황 및 개발계획

가. CCS기술의 개발현황

(1) 개요

- 우리나라는 정부는 2009년 7월에 100조원을 녹색성장에 투자 하는 국가전략을 수립하고, 11월에 2020년까지 배출전망치 대비 연간 온실가스 배출량의 30%를 감축하는 목표를 설정 하였으며, 또한 CCS기술을 목표 달성을 위한 주요기술의 하
나로 분류하였다(28).

- 2010년 6월에는 국가융합지도(NBIC)를 발표하고 2020년까지 에너지·환경 분야의 우선 추진과제로 CCS기술을 신정하였으며, 2020년까지 국내기술로서 CCS기술을 상용화하여 세계 시장을 선점한다는 목표를 세웠다(27).

- 그러나 현재 우리나라의 CCS 기술수준은 대규모 실증 프로젝트를 수행하고 있는 미국, 일본, EU 등에 비해 약 10년 정도 뒤쳐진 것으로 평가되고 있다(28). 정부는 2020년 이후로 예상되는 세계 CCS시장에서 경쟁력을 확보하기 위해 2010~2019년 기간에 2.3조원 규모의 투자를 계획하고 있다.

- 또한 녹색성장위원회는 2010년에 국가 CCS 종합 추진계획을 수립하고 당시 교육과학기술부가 CO2 포집·저장기술을, 당시 지식경제부가 CO2 포집 및 저장의 실증 연구개발을 담당토록 부처별 역할을 정리하였다.

- 우리나라의 CCS 기술개발 목표는 현재 CO2 톤당 약 40~60달러 수준인 CO2 포집비용을 2020년까지 20달러로, CO2 수송/저장비용을 10달러 이하로 낮추어 상용화하는 것이다. 따라서 상용화에 가장 근접해 있는 연소 후 CO2 포집기술(습식 및 건식)을 중심으로 기술개발이 이루어지고 있다.
(2) 아민계 흡수제

- 한국전력연구원에서는 1994년부터 연소 후 포집기술의 개발에 착수하여 기반기술을 확보한 상태에 있다. 서울화력 등의 발전소에서 알카놀 아민류를 사용한 시험시설을 가동 중에 있다. 그러나 상용화를 위해서는 포집과정의 에너지 소비량이 많은 문제점을 해결해야 한다.

- 또한 한국전력연구원에서는 1997~2007년에 60억 원의 연구비로 1일 2톤 이하 용량의 연소 후 습식 CO₂ 분리회수 실험설비를 건설 및 운용하면서 시스템 개념연구와 흡수제 개발을 수행하였다.

- 2008~2012년에는 약 300억 원의 예산으로 소규모 공정의 실증을 통하여 규모가 큰 시험시설의 기본개념을 개발하였으며, 장기간 운전에 따른 특성을 규명하고 CO₂ 회수비용을 저감시켰다. 또한 2013~2020년에는 약 3,000억 원의 예산을 투입하여 100MW급 화력발전소에 CCS 시설을 설치하고, 500MW급 화력발전소를 대상으로 상용화할 수 있는 기술 개발을 완료할 계획이다.28)

(3) 건식흡수제

- 한국전력연구원은 2002년 10월부터 한국전력공사 및 발전 5
사와 함께 “건식 흡수제를 이용한 이산화탄소 흡수 신공정”을 개발하고 있다. 한국전력연구원이 흡수제 개발 및 성형제 조기식을 담당하고 있고, 한국에너지기술연구원이 건식 흡수 공정을 개발하고 있다(29).

- 결과적으로 한국전력연구원은 2005년에 KHCO₃를 기본물질로 하는 건식흡수제를 세계 최초로 개발하였으며, 연간 150톤 용량의 CO₂ 흡수시험시설(시간당 100Nm³-CO₂)의 건설을 2008년에 완료하였다. 2012년까지 남부발전 하동화력에 연간 3,000톤-CO₂ 흡수용량의 실증플랜트를 건설하여 80~85%의 CO₂를 제거하는 기술을 실증하고 있다.

- 건식흡수제를 사용하는 CO₂ 포집기술의 실증에는 흡수제의 재생온도를 현재의 200~250℃에서 160℃ 수준으로 낮추는 과제가 남아 있다(30). 이 기술은 상당히 혁신적인 기술로서 기술적 잠재력이 매우 높 있으며, 기존 습식기술을 대체할 수 있는 신기술로서 기대되고 있다.

(4) 막 분리법(31)

- 고분자 소재들을 이용하는 여러 기술들 중에서 특정성분이나 물질만을 선택적으로 통과시키는 ‘분리막 기술’은 연료전지, 해수담수화, 오염수 처리, 온실가스 분리 등 미래 친환경
녹색 기술을 선도할 수 있는 핵심 분야로 평가되고 있다.

- 그러나 기존의 고분자들은 강한 물리적, 화학적 결합력에 의해 기체나 액체 등이 통과하기 어려운 아주 밀집된 구조를 가지고 있기 때문에 분리막 소재로 사용하면 투과도가 낮아 분리막 공정의 크기 및 운전비용이 상승하는 단점이 있다.

- 이를 해결하기 위해 국내의 한양대학교 분리막연구실은 고분자 합성에서 무질서하고 강적한 사슬구조를 지닌 플라스틱 내부공간을 재배열하는 신개념을 도입하여 특정 기체분자와 이온을 빈한 속도로 전달할 수 있는 신소재를 개발하였다. 가용성 폴리아미드(polyimide)5) 제조에서 350~500°C의 열 변환반응을 거쳐 모래시계 형태의 연결기공과 높은 자유체적(free volume)6)의 플라스틱 소재를 제조할 수 있다.

- 이러한 나노크기 기공의 플라스틱 소재는 CO2 분리에 사용되는 기존 플라스틱 소재(셀룰로오스 아세테이트)에 비해 투과성능이 500배나 우수하고 메탄 분리효율도 4~5배 높기 때문에 CO2 포집시스템을 혁신할 수 있다. 나노크기 기공의

5) 초고성능 플라스틱 중 강력한 내열성을 지닌 재료로 전기·전자 부품, 자동차 부품, OA기기 부품 등 여러 분야에서 이용.

6) 고분자는 긴 분자가 포어있는 형태이기 때문에 에너지를 받으면 움직일 수 있으며, 그에 따라 고분자 물질 내부에 형성되는 빈 공간을 뜻함.
플라스틱 분리막 기술이 상용화되면 현재 120달러 수준인 CO₂ 톤당 분리회수 처리비용을 5달러까지 낮출 수 있을 것으로 기대되고 있다.

따라서 새로운 플라스틱을 이용해 제조된 원통 모양의 ‘중공사(Hollow Fiber)’ 분리막 모듈은 CCS 기술의 발전과 실증에 큰 역할을 담당할 수 있을 것이다. 현재 국내 연구진은 다국적 기업들에게 해당 기술의 이전을 진행 중에 있으며, 상업화를 위한 공동연구를 수행하는 등으로 국제적으로 CO₂ 분리막 기술의 개발을 선도하고 있다.

국내 ‘이산화탄소 저감 및 처리기술 개발사업단’은 CCS 기술을 실증하기 위한 3단계의 연구기간 중에 20Nm³/hr급의 시스템을 구축함으로써 분리막 기술의 대규모화, 상업화 등을 실증하고, 국제적으로 CO₂ 포집 및 저장이 상업화될 것으로 기대되는 2020년까지는 이 기술을 실제 공정에 적용하여 600MW급 화력발전소 1기에서 연간 300만 톤의 CO₂를 분리막 기술로 처리할 수 있을 것으로 예상된다.

(5) 순 산소 연소기술

국내에서는 CO₂ 배출량이 많은 제철소와 석탄발전소에 순 산소 연소기술을 적용하는 연구를 수행하고 있으나 아직까
지는 개념연구 단계에 머물러 있다.

두산중공업의 영국 자회사이며 스코틀랜드에 위치한 두산밥콕이 순 산소 연소기술의 40MW급 발전소용 보일러 실험에 성공하였는데, 이는 상용화 가능한 수준의 기술로는 세계 최초로 평가되고 있다.

<그림 6-5> 두산밥콕의 순 산소 연소기술 공정도[32]

두산중공업은 2008년에 CO₂ 포집 및 저장기술의 보유업체인 캐나다의 HTC에 대한 지분 투자를 통하여 CO₂ 포집기술을 확보하고 앞으로 순 산소 연소기술을 발판으로 저탄소 발전 시장을 선점할 수 있는 계획을 추진하고 있다.

한국전력연구원에서도 순 산소 연소기술의 하나인로서 배체 순환식 가스연소시스템을 개발하고 있으며, 이를 화력발전소에 적용하여 실증할 계획으로 있다.
나. 연소 전 \(\text{CO}_2 \) 포집기술 및 IGCC기술 개발현황

○ \(\text{CO}_2 \) 포집기술 중 차세대 기술로 기대되는 연소 전 \(\text{CO}_2 \) 포집기술에 대한 국내 연구현황은 아직까지 미비한 실정이다.

- 국내에서 석탄가스화 공정에 연소 전 \(\text{CO}_2 \) 포집기술을 이용한 첫 사례는 1950년대 말 전남 나주비료공장에 설치된 무연탄가스화 암모니아 제조공장이다. 그 이후는 일부 기초연구를 제외하면 한동안 IGCC에 관한 연구가 없었다.

- 1992~1997년에는 “환경공학 기술개발사업(G-7)”의 하나로
“온실기체 제어 및 기반기술” 과제가 수행되었고 1999년에는 당시 과학기술부가 온실가스 사업단을 발족시켜 “환경공학 기술개발사업”에 온실가스 기술개발과제를 추가하였다.

또한 POSCO, 한국전력연구원 등에서도 개별사업 형태로 국내 전문연구기관들과 협력하여 관련 기술들을 개발 중이다. 특히 한국에너지기술연구원에서는 2006년까지 단위공정 개발을 통해 연소 전 CO₂ 포집기술이 연계된 석탄가스화 일괄 공정의 기본설계기술을 확보하였고 2012년까지 200kW급 IGCC에 대한 기술개발을 완료할 예정이다.

○ 연소 전 CO₂ 포집시스템 연구현황

- IGCC 시스템의 국내 기술수준은 선진국과 비교하여 50~60% 정도로 평가되고 있다. 이러한 기술수준을 향상시키기 위해 공정자동화와 지능화기술 및 이와 관련된 다양한 분야의 산학연 협동연구들이 이루어지고 있다.

- 현재까지 국내에서는 IGCC와 연계된 연소 전 CO₂ 포집공정 시스템의 최적화 설계기술이 연구된 적은 없으나 이와 유사 한 기술로서 포항공대, 현대정보기술 및 현대석유화학이 협 동연구를 통해 현대석유화학(주)의 시설을 대상으로 에너지 수급에 관한 실시간 최적화기술을 개발한 경험이 있으며
SK 석유화학공장에도 이를 적용한 경험이 있다.

○ 국내 IGCC 연구개발 현황(33)

- 2004년 12월의 “제2차 전력수급 기본계획”에는 300MW급 IGCC 1호기의 건설계획이 반영되었고, 2006년부터 IGCC 기술개발의 1단계 사업으로 IGCC 요소기술들을 개발하기 시작하였다.

- 또한 2008년 12월의 “제3차 신재생에너지 기술개발 및 이용·수급 기본계획”에서는 한국형 IGCC기술 확보를 위한 설계기술 자립과 실증플랜트 건설이 결정되었다.

- 2009년 5월의 “중점 녹색기술 개발과 상용화전략”에서는 300MW급 IGCC 발전기술의 개발을 완료한 후에 600MW급 상용화플랜트를 건설하기로 결정하였다.

- 이를 실행하기 위해 2011년 2월에 지식경제부와 에너지기술 평가원의 지원 하에 한국전력연구원을 중심으로 두산, 에너지기술연구원, 고등기술연구원 등 산학연이 참여하여 한국형 300MW급 IGCC 실증플랜트를 개발하기 위한 2단계 IGCC 기술개발사업이 출범하였다.

- 2단계 IGCC 사업은 사업비 14,334억원(정부 1,288억원, 민간
13,046억원으로 2016년까지 한국형 IGCC(태안화력발전소, 380MW)를 건설하여 설계기술 자립도 90% 이상, 설비 국산화율 90% 이상을 달성할 예정이다.

<그림 6-7> 국내 IGCC 중장기 개발계획

7) 국내 최초의 태안 IGCC화력발전소(380MW급)를 2011년 2월부터 2016년 7월까지 건설계획.
다. 한국에너지기술연구원의 CaO 흡수제 연구현황

○ 탄화공정의 CO₂ 고체흡수제로 금속 산화물계를 선정하였다. 불순물에 대한 저항력이 강하고 재생성이 높으며 소결에 의한 성형제품의 강도가 높은 금속 산화물계로는 MgO, AgO, K₂O 등이 있으나 이들은 500℃ 이하에서만 사용이 가능하고 NGCC 공정온도(700℃) 이상에서는 사용할 수 없는 단점이 있다.

○ 그러나 CaO는 더 이상의 온도에서도 사용이 가능하며 특히 유향탄 차르(Bituminous coal char)로부터 고열량의 파이프라인 가스를 생산하기 위한 850℃의 고온 가스화반응에서 발생된 CO₂ 제거에도 사용할 수 있다.

○ 에너지기술연구원의 경우는 메탄-수증기 개질반응의 CO₂ 분리 회수를 위한 고체흡수제로 생석회(CaO)를 사용하였다. CaO와 같은 무기계 고체흡수제에 열 내구성을 부여하기 위해서는 무기 바인더를 첨가해야 한다. 에너지기술연구원에서는 생석회와 무기 바인더를 혼합한 후에 소성을 통한 흡착제 제조과정을 거쳤으며 여기에는 기존의 전통도자기 제조방법을 사용하였다.

○ 도자기 제조의 주원료는 SiO₂를 주성분으로 한 규석, kaolinite (Al₂(SiO₅)(OH)₄)와 운모 등을 포함한 점토, K⁺, Na⁺, Ca⁺ 등을 포함한 정석(알루미노 규산염)이 사용된다. SiO₂가 흡수제의 곁
격을 성형하고, 점토는 원료에 가소성을 주고 또한 성형성을 높이며, 장석류는 유리질 형성을 유도한다.

○ 또한 CaO 흡수제의 내구성 및 CO₂ 흡수성능을 강화하기 위해 흡수제의 주물질인 탄산칼슘 이외에도 벤토나이트, 장석, 알루미나, 티탄산칼슘, PMC 15, PMC 50 등을 변수별로 혼합하여 흡수성능을 평가한 바 있다.

<그림 6-8> CaO 흡착제 제조에서 CO₂ 흡수제 원료물질 및 역할(34)

○ 에너지기술연구원의 연구에서는 CaO 흡수제의 CO₂ 흡수성능이 750℃에서 가장 우수하고 재생성능은 950℃에서 가장 우수한 것으로 평가되었다. 또한 흡수제를 10회 이상 반복 사용하여도 CO₂ 흡수성능의 저하가 일어나지 않는 것으로 연구되었다.
라. CO2 지중저장기술 개발현황(14,20,33)

○ 해양수산부의 연구사업에는 한국해양연구원(주관)과 한국지질 자원연구원(협동), 민간연구소인 (주)네오엔비즈 및 관련 대학(고려대, 한양대)의 해양학, 화학공학, 기계공학, 환경학, 지질학, 자원공학, 조선공학, 생태학 등의 전문연구팀들이 참여하고 있다.

○ 우리나라의 CO2 저장지역의 육상 공간이 부족하고 인구밀도가 높기 때문에 해양 퇴적층에 CO2를 저장하는 것이 바람직하다. 온실가스를 감축하기 위하여 세계 최초로 상업 및 산업 규모로 CO2 저장사업을 수행하고 있는 Statoil사의 Sleipner사업도 해양의 염태수층을 대상으로 하고 있다. 우리나라와 같은 조건의 일본도 육상 공간이 빈약하고 인구밀도가 높아 해양의 CO2 저장기술 개발에 노력하고 있다.

○ 국토해양부의 “CO2 해양처리기술 개발사업”을 수행하고 있는 한국해양연구원은 2005~2009년 기간에 CO2 해양 지중저장의
핵심기반기술을 개발하고, 2010~2014년에는 1만톤급 시험저장시설의 설립을 통해 기술을 실증하며, 또한 실증용 저장후보지를 선정하는 것을 목표로 하고 있다.

<그림 6-9> 한국해양연구원의 CO₂ 해양저장기술 개발 로드맵

○ 또한 상기 로드맵을 토대로 2015년부터 발전소 또는 제철소의 CO₂ 포집기술과 연계하여 민간 주도로 동해가스전 등을 대상으로 보급형의 10만톤급 CO₂ 저장을 추진할 계획이며, 2050년까지 연간 1억톤의 CO₂를 CCS로 처리하여 매년 2조원 이상의 환경비용을 절감하는 방안을 모색하고 있다.

○ 한국지질자원연구원도 국내의 CO₂ 저장저장기술의 개발과 설
증에 참여하고 있으며, CO₂ 지중저장 중장기 로드맵을 수립하여 실행하고 있다.

그림 6-10) 한국지질자원연구원의 CO₂ 지중저장 중장기 로드맵

<table>
<thead>
<tr>
<th>핵심주제내용</th>
<th>1단계</th>
<th>2단계</th>
<th>3단계</th>
<th>4단계</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ 지중저장 전성기술개발</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>기술공고</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해수면 (해수면)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
결 론

○ 화석연료 산업구조를 그대로 유지하면서 CO₂를 감축할 수 있는 CCS기술은 국제 온실가스 감축체제에서 가장 주목받는 기술 중 하나이며, 2050년까지 이 기술을 통해 연간 40억 톤의 CO₂를 감축할 수 있을 것으로 기대되고 있다(19).

○ 특히 CO₂ 감축과 CCS기술의 보급에 가장 적극적인 EU는, 현재 석탄발전소의 경우에 CCS기술을 적용하면 발전비용이 20유로/MWc 증가하지만, 2020년에 초까지 CCS기술을 상용화하여 보급하기 시작하면 탄소배출권의 가격이 37유로/톤- CO₂ 이하 만 되어도 CCS 석탄발전소가 다른 저탄소 에너지기술보다 비용 경쟁력이 있을 것으로 보고 있다.

○ 그러나 이를 달성하려면 2020대 초부터 CO₂를 대량 배출하고 있는 산업시설에 CCS기술을 보급하기 시작하여 2020~2050년 기간에 약 3,400개의 CCS 프로젝트(전체 대상 시설의 20~ 40%)를 개발해야 하는 것으로 분석되고 있다.
○ 산업시설에 대한 CCS기술의 적용은 필연적으로 비용 증가를 수반할 수밖에 없으므로 산업 분야 스스로 이를 실시할 것으로 기대하기는 어렵다. 따라서 CCS 보급을 가속화할 수 있는 인센티브제도 및 규제제도를 갖추어 기업들이 CCS기술을 적용할 수 있는 여건을 만들어주어야 한다.

○ 또한 CCS기술을 실증 및 상용화하고 2020년대 초부터 이를 보급해나가기 위해서는 2010~2030년의 기간에 세계적으로 약 2,560억 달러의 투자비가 필요한 것으로 추산되고 있는데(19), 이러한 막대한 투자비를 조달할 수 있는 지원 정책이 필요하다.

○ CO₂ 포집기술에서는 연소 후 포집, 연소 전 포집, 순 산소 연소의 3가지 CO₂ 포집기술이 2020년대 이후부터 비용경쟁력을 가질 것으로 전망되고 있는데, 그 중에서 연소 후 포집기술의 비용경쟁력이 가장 높을 것으로 예상되고 있다.

○ CO₂ 수송기술의 경우는 기존의 천연가스를 수송하는 파이프라인 및 선박 수송기술을 모두 그대로 사용할 수 있기 때문에 CCS 보급 초기에 CO₂를 대량 수송할 수 있는 인프라를 구축하는 것이 중요한 과제이다.

○ 또한 CO₂ 저장기술은 염대수층 저장이 폐유전·가스전 저장보다 저장 잠재력이 크지만 비용이 더 많이 소요되고 개발 위험성이 더 높으므로 이를 개발하기 위해서는 염대수층 CO₂ 저장에 대
한 위험 보상체제를 갖추는 것을 고려해볼 필요가 있다.

○ 결론적으로 CCS기술의 보급은 지구온난화 방지를 위해, 또한 기존의 화석연료 경제를 유지하기 위한 대책이며, 환경보전을 위한 불가피한 선택이다. 따라서 CCS기술의 개발과 실증 및 보급은 장기적인 계획을 세워 엄중하게 진행시켜야 할 것이다.

○ 우리나라의 경우도 2020년까지 CCS 비용을 CO₂ 톤당 30달러 수준으로 낮추어 CCS 보급을 본격 전개할 예정이며, 이를 위해 국가 CCS 종합 추진계획을 세위 2.3조원의 투자계획을 마련하였다. 또한 이를 통해 2030년까지 약 100조원의 누적매출과 10만 명 이상의 일자리 창출 및 연간 3,200만 톤의 CO₂ 감축을 기대하고 있다.

○ 본 연구에서는 CCS기술을 개발하고 있는 각국의 기술개발동향, 실증 프로젝트,비용분석, 관련 법제도 개발 등의 분석을 통해 국내 CCS 종합 추진계획에서 앞으로 추가 반영할 필요가 있는 사항으로 다음과사항들을 제시한다.

- 세계적으로 2020년까지 약 60개의 대형 시설에 CO₂ 포집기술을 적용하는 시범프로젝트에만 약 270억 달러가 투자될 것으로 예상되고 있다(19). 우리나라의 CO₂ 포집기술 개발에서 일부 앞서나가고 있지만, 이를 시장경쟁력 확보로 연결하
기 위해서는 주요 산업(발전, 철강, 정유, 시멘트, 가스 등)의 CO$_2$ 포집기술 개발과 실증을 위한 시범프로젝트 투자비를 확대할 필요가 있다.

- 산업 분야에 CCS기술을 적용하기 위해서는 산업 분야별로 CCS기술의 CO$_2$ 감축효과를 정확히 산정할 수 있어야 한다. 이를 위해서는 배출량, 적합한 기술, 비용 등에 관한 국가 데이터베이스를 구축할 필요가 있다. 특히, CCS기술의 보급 초기에는 산업 분야별 모범사례를 개발하여 분야별로 보급 계획을 추진하면 더욱 신속한 보급이 가능할 것이다.

- CCS기술의 도입에서 비용과 안전성에 대한 정부의 정책적 입장과 산업적 입장 사이에는 큰 차이가 있다. CCS기술의 개발전략과 개발일정에 대한 연구목적은 CCS기술의 보급에 장애가 되지 않을 정도로 정부와 산업의 입장 차이를 좁힐 수 있는 방안을 찾는데 두어야 할 것이다.

- CCS기술의 보급 확산을 위해서는 산업 분야가 안심하고 CCS기술을 적용할 수 있도록 해주는 법과 제도의 개발이 우선되어야 한다. 또한 CCS기술의 보급을 위한 대규모 재정 조달에 대한 대중의 이해를 얻을 수 있어야만 CCS 산업의 구축이 가능할 것이다.
참고문헌

2. 녹색성장위원회, “국가 CCS 종합추진계획”, 2010.7.13
3. IEA, ”Technology Roadmap, Carbon Capture and Storage”, 2009
4. EU ZEP, ”The Costs of CO₂ Capture, Transport and Storage”, 2011.7
5. 風間伸吾, “地球温暖化を防ぐ高分子膜”, 高分子(日本), 57, 2008
7. 김윤희 등, 슬러지 고화물을 이용한 이산화탄소 생광물화 및 생성물 자원화 기술개발, 공동연구보고서, 수도권매립지관리공사, 인하대학교, 2011
8. 기후변화뉴스레터 266호, “IPCC AR5, 지구온난화의 심각성 제자경고”, 한국환경산업기술원, 2013.08
9. 이중국, “최근의 국내외 탄소배출권제도 동향”, 한국기후변화대응센터(CRIK), 2012.03
10. IPCC, ”IPCC Special Report on Carbon Dioxide Capture and Storage”, Cambridge University Press, 2005

20. IEA/World Business Council for Sustainable Development,

22. NETL, "DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update", 2011

23. 위정호, "탄소 포집 및 저장기술(CCS; Carbon Capture & Storage)을 이용한 이산화탄소 배출 저감", 전문가리포트, CCIC, 2008

25. 한국극지연구진흥회, “동해 울릉분지 인근 해저퇴적층, 온실가스 50억 톤 연구 저장 가능”, 세소식, 출처 국토해양부, 2012.04.06

26. 기후변화 E-Newsletter, “한국, 부문별·업종별·연도별 온실가스 감축목표 최종 확정”, vol. 157, 2011년 7월

http://www.mke.go.kr

33. 한국형 300MW급 IGCC 실증플랜트 기술개발사업, http://www.igcc.or.kr/
34. 백일현 등, “연료개발형 연소 전 탈탄소화 방법을 이용한 CO2 분리기술 개발”, 2008
35. 김준모, “이산화탄소 저장 기술의 현황 및 전망”, 공업화학 전망, 12권 2호, 2009
36. 강성길, “CO2 가스 해양경리시스템 연구개발 타당성 기획연구”, 해양수산부 국가연구개발사업, 2004
37. 강성길, 허철, “해저 지질구조내 CO2 저장기술의 연구개발 동향 및 향후 국내 실용화 방안”, 한국해양환경공학회지, 11권 1호, 2008
저자소개

신희성
- 한양대학교 기계공학과 졸업 공학사
- 미국 사라팩스대학원 산업공학 석사
- 미국 노스웨스턴대학교 경영과학 공학박사
- 전, 한국에너지기술연구원 선임연구부장 및 책임연구원
- 현, 한국과학기술정보연구원 전문연구위원
- 저서: 재생에너지, 바이오매스에너지, 바이오연료, 저탄소 에너지 기술 등 한국과학기술정보연구원 발행 기술동향보고서 다수

오창섭
- 한양대학교 화학공학과 졸업 공학사
- 미국 일리노이 주립대학교 에너지공학과 M.S.
- 충북대학교 화학공학과 공학박사
- 전 한국에너지기술연구원 책임연구원
- 현, 호시대학교 화학공과 겸임교수
- 현, 한국과학기술정보연구원 전문연구위원
- 저서: 재생에너지 개발을 통한 에너지안보 항상전략 등 KISTI 발행 기술동향분석보고서 다수, 포트란 프로그램(대학교 제), 화학공학의 이해(대학교 제), 기초공학개론(대학교 제)

김영철
- 서울대학교 원자력공학과 공학사
- 프랑스 ENSIEG-INPG 공학박사, INSTN 기술사
- 전, 한국원자력연구원 책임연구원
- 현, 한국과학기술정보연구원 전문연구위원
- 저서: 청정전력 개발현황, 청정개발체제(CDM) 및 배출권거래제(ETS) 개발동향, 저탄소 에너지기술 개발동향, 바이오매스에너지 개발동향, 기후변화정책 개발동향, 에너지/환경/건설 분야 미래유망기술 선정, 고경력 과학기술인 활용 지원 사업[ReSEAT 프로그램]의 성과에 관한 연구 등 한국과학기술정보연구원 발행 기술동향보고서 다수
요 약

이산화탄소 포집·저장기술(CCS: CO\textsubscript{2} Capture and Storage)은 CO\textsubscript{2} 대량 배출원으로부터 물리적, 화학적 또는 생물학적인 방법을 사용하여 CO\textsubscript{2}를 포집하고, 이의 수송과 저장을 통해 CO\textsubscript{2} 배출량을 대량 감축가는 기술이다. 화석연료 산업구조를 유지하면서 CO\textsubscript{2}를 감축할 수 있기 때문에 국제 온실가스 감축체제에서 가장 주목받는 기술의 하나이다.

우리나라도 국제사회의 기후변화 완화를 위한 CO\textsubscript{2} 감축대책에 참여가 불가피해지는 상황에서 2020년까지 CO\textsubscript{2} 배출량을 30% 감축하는 목표를 세웠으며, 이를 달성하기 위한 구체적인 조치의 하나로 2020년대 초까지 CCS기술을 실증 및 상용화하여 화력발전, 철강, 정유, 시멘트, 석유화학, 천연가스 생산 등의 산업에 CCS기술을 보급하기 위한 “국가 CCS 종합 추진계획”을 수립하여 추진하고 있다.

그러나 산업시설에 대한 CCS기술의 적용은 비용 증가가 수반되므로 산업 분야 스스로 이의 실시를 기대하기는 어렵다. 따라서 CCS 보급을 위한 인센티브제도 및 규제제도를 갖추어 기업들이 CCS기술을 적용하면 혜택을 볼 수 있는 여건을 만들어주어야 하며, 그러기 위해서는 CCS기술의 개발현황, 비용 전망, 기술의 실증 및 상용화 시기, 인센티브제도 및 규제제도 등에 대한 정확한 정보를 파악할 필요가 있다.

본 연구에서는 IEA의 CSLF, EU의 ZEP, GGCSI, IMO 등 국제 CCS 연구기관들의 최신 CCS 비용분석, 법제도 추진현황 및 기술 진척현황 등을 요약하여 정부, 대학, 연구기관 및 중소기업 등의 CCS 연구개발방향, 개발진락, 개발일정 등에 참고할 수 있는 자료를 생산하였다.