2005 미래유망 사업화아이템 이슈분석

RFID

RFID 활성화 추진을 위한 정책적 시사점 발굴

박선영 · 이은곤 · 권영일

한국과학기술정보연구원
머 리 말

21세기는 지식과 정보가 그 국가의 경쟁력을 좌우하는 지식기반 산업사회로 나아가고 있으며, 최고가 아니면 살아남을 수 없는 무한 경쟁시대가 되어가고 있습니다. 우리나라가 이러한 변화 속에서 생존하기 위해서는 국가경쟁력 강화가 필수 불가결한 것으로 인식되고 있으며, 이를 위해서는 선진국형 고부가가치 산업의 육성이 절실히 요구되고 있습니다.

이러한 시대적 요구 속에서 한국과학기술정보연구원에서는 우리나라가 지식기반 산업사회를 선도해 나갈 수 있도록, 미래유망 사업화 아이템을 도출·선정하고 이에 대한 심층분석정보를 제공하고 있습니다. 이를 통해, 국가 과학기술 확산은 물론 국제경쟁력을 극대화시키기 위해 노력하고 있습니다.

미래유망 사업화아이템 이슈분석사업의 일환으로 출간되는 본 보고서는 RFID 산업 발전에 많은 기여를 할 것으로 전망되고 있어, 많은 주목을 받고 있습니다. RFID는 학문분야에서는 연구의 수단으로, 산업분야에서는 기술개발의 도구로 점차 그 활용 폭을 확대해나가고 있습니다. 이와 같이 RFID는 여러 산업들에 파급효과가 매우 커서, 국가 산업 측면에서 중요성이 부각되고 있습니다.

본 보고서는 미래유망 사업화아이템의 도출과정 및 선정경위와 RFID에 대한 기술·시장의 분석, 이슈분석을 통해 체계적이고 심도 있는 분석정보를 제공하고자 하였습니다. 본 연구의 결과가 관련 과학기술정보를 국내에 확산시키고, 이와 아울러, 관련 산업의 국제경쟁력 증대에 작으나마 도움이 되었으면 합니다.
끝으로 본보고서는 박선영 연구원, 정보통신정책연구원의 이은곤 연구원, 권영일 책임 연구원이 공동 집필한 것으로서, 이 분들의 노고에 감사드리며, 수록된 내용은 한국과학기술정보연구원의 공식의견이 아님을 밝혀두고자 합니다.

2005년 11월

한국과학기술정보연구원

원장 조 성희
목차

제1장 서 론 ... 1

1. RFID의 개념 및 분석 필요성 ... 1
2. 연구 방법 ... 5

제2장 선정 과정 ... 7

1. 유망 아이템 발굴/평가 프로세스 ... 7
 가. 프로세스 설계의 배경 .. 7
 나. 정성적 프로세스 ... 9
 다. 정량-정성적 프로세스 ... 12

2. RFID의 선정과정 .. 16
 가. 유망 아이템 후보군의 도출 ... 16
 나. RFID의 유망성 평가 .. 19

제3장 산업 시장 분석 ... 23

1. 개요 및 특성 ... 23
2. 동향 및 전망 .. 24
 가. 연구개발 동향 ... 24
 나. 표준화 동향 ... 27
 다. 비즈니스 영역 확산 동향 .. 29
 라. 시장 진입 및 파급효과 분석 ... 31
 마. RFID 확산 촉진요인: 태그가격 ... 33
바. RFID 도입성과 .. 35

제 4 장 이슈 분석 .. 41

1. RFID 활성화의 기업측면에서의 시사점 ... 41
 가. RFID 성공사례 검토 및 시사점 도출 필요 ... 41
 나. USN 네트워크화의 연계가능성 검토 ... 42
 다. RFID를 이용한 다양한 비즈니스 모델 개발이 필요 42

2. RFID 활성화의 정책측면에서의 시사점 ... 43
 가. 선택적 산업육성책 .. 43
 나. 정부주도형 시범사업 실시 및 산/학/연 공동 연구 추진 필요 44

3. RFID 기술 개발 측면에서의 시사점 ... 46

제 5 장 결 론 ... 47

참고문헌 .. 49
표 목차

<표 1-1> 주파수별 RFID 구분 및 특성 ... 3
<표 1-2> EPC글로벌 RFID 테그 구분 ... 4
<표 2-1> 정량-정성적 유망아이템 발굴 프로세스 14
<표 2-2> 유망성 평가지표별 평가기준 ... 15
<표 2-3> 미래 유망사업 아이템 후보군의 도출 .. 18
<표 2-4> 미래 유망사업 아이템의 선정 ... 19
<표 2-5> RFID의 평가내용 ... 21
<표 3-1> 각 국가별 UHF RFID용 주파수 분배 현황 28
<표 3-2> 전 세계 RFID 시장 전망 .. 32
<표 3-3> RFID 테그 가격변화추이 예측 ... 35
<표 3-4> 국내외 시범사업 사례의 주요 성과결과 39

그림 목차

<그림 1-1> RFID 시스템 구성요소 ... 2
<그림 2-1> 정성적 프로세스 개발 방법 ... 10
<그림 2-2> 정성적 유망아이템 프로세스 ... 11
<그림 2-3> 선정단계에서의 유망성 평가기준 ... 12
<그림 3-1> RFID 서비스 효과분석 ... 32
<그림 3-2> RFID-chip 가격변화추이 ... 34
<그림 3-3> Class 0,1 RFID 테그 가격변화추이 예측 36
<그림 3-4> RFID 관련 신규 발생 수익 ... 37
제1장 서 론

1. RFID의 개념 및 분석 필요성

○ RFID(Radio Frequency IDentification)는 ‘사물에 전자태그를 부착하고 각 사물의 정보를 수집/가공함으로써 개체 간 정보교환, 측위, 원격처리, 관리 등의 서비스를 제공하는 것’임 1).

- 미국에서는 ‘Smart Dust‘라는 개념에서 자율적인 센싱과 통신 플랫폼 능력을 갖춘, 보이지 않는 ‘컴퓨팅 시스템’으로 정의 하여 RFID의 내재성 및 독립성을 강조함.
- 일본에서는 ‘무엇이든, 어디서든 네트워크’를 가능하게 하는 Ubiquitous Network의 ‘센서’로 정의하여 기타 ITA 구성요소 와의 연계가능성을 강조함.
- 국내에서는 ‘사물에 전자태그를 부착하고 각 사물의 정보를 수집/가공함으로써 개체 간 정보교환, 측위, 원격처리, 관리 등의 서비스를 제공하는 것’으로 정의하여 RFID의 내재성 및

연계가능성 모두를 인정함.

○ RFID의 시스템은 크게 태그와 리더기 및 서버 또는 네트워크로 구성됨(그림 1-1 참조).

<그림 1-1> RFID 시스템 구성요소

자료 : Accenture, RFID Executive Overview, 2004, p.3을 재구성함.

○ RFID는 전원공급 유무, 사용주파수 대역 등에 따라 구분이 가능함.

- 전원 공급의 유무에 따라 전원을 필요로 하는 Active형과 내부나 외부로부터 직접적인 전원의 공급 없이 리더기의 전자기장에 의해 작동되는 Passive형으로 구분됨.
- Active타입은 리더기의 필요전력을 줄이고 리더와의 인식기를 멀리 할 수 있는 장점이 있으나, 전원 공급 장치를 필요로 하기 때문에 작동시간의 제한을 받으며 Passive형에
비해 고가인 단점을 가짐.
- Passive 타입은 Active 타입에 비해 매우 가볍고, 가격도 저렴하므로 반영구적으로 사용이 가능하지만, 인식거리가 짧고 리더기에서 더 많은 전력을 소모한다는 단점이 존재함.
- 또한, 사용 주파수 대역에 따라 인식거리, 인식속도, 환경에 대한 영향측면에서 다른 특성을 가짐(표 1-1 참조).

![표 1-1] 주파수별 RFID 구분 및 특성

<table>
<thead>
<tr>
<th>주파수</th>
<th>저주파</th>
<th>고주파</th>
<th>극초단파</th>
<th>마이크로파</th>
</tr>
</thead>
<tbody>
<tr>
<td>125.134KHz</td>
<td>13.56MHz</td>
<td>433.92MHz</td>
<td>860~960MHz</td>
<td>2.45GHz</td>
</tr>
<tr>
<td>인식거리</td>
<td>60 Cm 미만</td>
<td>60 Cm 가까이</td>
<td>50~100m</td>
<td>3.5~10m</td>
</tr>
<tr>
<td>일반특성</td>
<td>· 비교적 고가</td>
<td>· 환경에 의한 성능저하 거의 없음</td>
<td>· 저주파보다 저가</td>
<td>· 짧은 인식거리 인식이 필요한 응용 분야에 적합</td>
</tr>
<tr>
<td>동작방식</td>
<td>· 수동형</td>
<td>· 수동형</td>
<td>· 능동형</td>
<td>· 능동/수동형</td>
</tr>
<tr>
<td>적용분야</td>
<td>· 송수신 통합</td>
<td>· 송수신 통합</td>
<td>· 동물관리</td>
<td>· 추적</td>
</tr>
<tr>
<td>인식속도</td>
<td>저속 ←――――――――――――→ 고속</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경영향</td>
<td>강진 ←――――――――――――→ 민감</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>태그크기</td>
<td>대형 ←――――――――――――→ 소형</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RFID

- EPC글로벌에서 이러한 RFID의 다양한 특징 및 용도를 기준으로 RFID를 Class 0, Class 1, Class 2, Class 3, Class 4, Class 5로 구분하여 각각의 특성을 밝힌 바 있으며 현재 많은 연구들에서 EPC글로벌의 분류 기준에 따라 RFID를 구분함(표 1-2 참조).

<표 1-2> EPC글로벌 RFID 태그 구분

<table>
<thead>
<tr>
<th>구분</th>
<th>Class 0</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
<th>Class 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>개요</td>
<td>제조사입력/읽기전용</td>
<td>사용자입력/읽기전용</td>
<td>임기쓰기능/수동형</td>
<td>반수동형/임기쓰기능</td>
<td>농동형/임기쓰기능</td>
<td>농동/독립형/읽기쓰기능</td>
</tr>
<tr>
<td>농동/수동형</td>
<td>수동형</td>
<td>반수동형</td>
<td>농동형</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>읽기/쓰기</td>
<td>읽기전용</td>
<td>임기쓰기능</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>전송성공률</td>
<td>낮다</td>
<td>높다</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>배터리</td>
<td>없음</td>
<td>리튬/마그네슘 전지</td>
<td>전원확장성용이</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수명</td>
<td>길다</td>
<td>짧다</td>
<td>길다</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>도달거리</td>
<td>짧다</td>
<td>길다</td>
<td>중간</td>
<td>길다</td>
<td></td>
<td></td>
</tr>
<tr>
<td>무선망네트워크</td>
<td>기능 없음</td>
<td>네트워크 구성가능</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

○ 향후 유비쿼터스 컴퓨팅 환경의 도래시 RFID는 기존에 인간에 의해 점유되어 왔던 ‘인식’이라는 영역을 분리해 낼 수 있을 뿐
제1장 서 론

아니라, 그로인한 파급 효과는 상당할 것으로 판단됨.

- RFID의 파급효과 영역 또한 In/Outbound Logistics 등 기업의 가치사슬의 본원적 활동에서 R&D, SI 등 기업의 부가적 활동영역으로, 물류·유통 산업군에서 다양한 산업군으로 확대될 것으로 전망됨.

○ 컴퓨터의 기반기술의 하나인 센싱 기술로서 파악되어 해외 주요국들의 경우 RFID를 비즈니스 영역에 확산시키고자 하는 노력이 정부 및 민간부문을 중심으로 지속적으로 추진되어 왔으며 주로 물류·유통 부문에서의 확산 노력이 두드러짐.

2. 연구 방법

○ 본 연구에서는 RFID 분야 중 불확실성이 높은 비즈니스 영역의 활성화를 위한 물류·유통 부문을 중심으로 분석하였음.

○ "제2장 선정 과정"에서는 미래 유망 사업 아이템으로서 RFID가 선정된 경우에 대하여 기술하였음. 사용된 주요 방법론은 미래 유망사업의 선정과 관련한 국내외 각종 기관 및 컨설팅사의 방법론을 참고로 하여 KISTI-SERI가 공동으로 개발한, 통합 프로세스 측면의 정성적인 방법론이었으며, IT 및 관련산업을 대상으로 하였음.
6 RFID

○ "제3장 산업 시장 분석"에서는 한국과학기술정보연구원(KISTI) 보유문헌 분석, 국내외 조사전문기관의 발표자료 분석, 전문가 자문 및 업계실태조사 등의 방법을 통해 기술·산업·시장의 동향을 파악하고 전망하였음.

○ "제4장 이슈 분석"에서는 전문가 자문 및 업계실태조사 등의 방법을 통해 RFID의 활성화 추진에 대한 이슈를 분석하였음.
제2장 선정 과정

1. 유망아이템 발굴/평가 프로세스

가. 프로세스 설계의 배경

○ 미래 유망 사업아이템(이하 아이템으로 칭함) 발굴 프로세스는 연구기관별 채택하는 방법론에 따라 상이하게 나타나고 있지만, 기본적으로 ① 환경분석(메가트렌드 분석), ② 유망 아이템 후보군 발굴, ③ 평가/우선순위결정으로 구성된다.

○ 국내 주요 연구기관의 미래 유망아이템 발굴 방법론은 해외에 촉발한 연구결과를 종합하는 방법 또는 전문가 위원회의 구성품 중정적 접근방법 등이 매우 중요시되고 있음.

- 해외의 경우, 전문가 위원회의 활용이 매우 체계적인 것으로 파악되지만, 정성적 접근이 중요시되는 점은 국내의 경우와 크게 다르지 않음.

○ 이러한 정성적인 전문가 위원회의 활용은 각종 의사결정에 있어서 장점이 많은 방법이지만 절차의 복잡성과 과도한 시간 및 비용 소요, 소수 전문가의 과도한 영향력 발휘에 의한 왜곡 등
의 단점이 있음.

○ 따라서 최근에는 전형적인 전문가 위원회 구성 방식 이외에 설문 통계분석, 기술연관분석(고병열, 2003), KDD(Knowledge Discovery in Database)/KM(Knowledge Mapping), Bibliometrics 등 보다 정량적이고 객관적인 방법이 주요 의사결정 시스템에 많이 도입되고 있음.

○ 그러나, “미래 유망아이템”의 경우, 다양한 사회현상과 밀접하게 연관되어 있기 때문에 시스템화 된 정량적 발굴 프로세스를 100% 적용하기란 사실상 어려운 점이 있음.

- 따라서, 효과적으로 미래유망 아이템을 발굴하기 위해서는 정성적 프로세스(주지한 바와 같은 단점이 존재하지만) 및 정량적 프로세스와 병행하여 사용할 필요가 있음.

○ 이에 따라, 본 보고서에서는 유망아이템 발굴에 대한 정성적 프로세스와 정량적 프로세스를 모두 적용하였음.
제2장 선정 과정

○ 한편, KDD/KM 등의 활용을 통한 정량적 프로세스의 적용은 기술분석 및 기술기획 관련 정책제안에 주로 적용되어 왔으나, 유망아이템 발굴과 같은 산업/시장분석측면으로의 활용은 현재까지 전무함.

- 따라서, 본 보고서에서의 정량적 프로세스는 이에 대한 최초의 시도로 볼 수 있음.

○ 종합하면, 본 보고서에서 개발한 미래유망 아이템 발굴 프로세스는 정성적 프로세스 및 정량-정성적 프로세스로 나뉘어짐.

- 정성적 프로세스를 통하여 IT 및 관련 산업분야 15대 유망아이템을 발굴하였고, 정량-정성적 프로세스를 통하여 화학-금속-바이오 산업분야 15대 유망아이템을 발굴하였음.

나. 정성적 프로세스

○ 정성적 프로세스는 미래 유망사업의 선정과 관련한 국내외 각종 기관 및 컨설팅사의 방법론을 분석·비교하여 장단점을 파악한 후, 통합 프로세스를 고안하는 형식으로 개발하였음(<그림 2-1> 참조).

2) 예를 들어, 산업구조분석, 시장수요예측, 시장기회/위협요인 분석, 메가트렌드 분석 등이 해당되며 “유망아이템의 발굴”은 이러한 다양한 산업/시장분석 방법론이 종합된 형태로 볼 수 있음.
○ 개발된 프로세스를 IT 및 관련산업에 적용하여 15대 미래유망 사업 아이템을 도출하였음.

○ 문헌고찰, 사례연구, 전문가 브레인스토밍, 과거 시장자료 DB 분석 등의 연구방법을 주로 사용하였음.

○ 정성적 유망아이템 발굴 프로세스는 <그림 2-2>와 같이 1) 선정 준비, 2) 후보발굴, 3) 평가・선정의 3 단계에 걸쳐 총 10개의 세부모듈로 구성됨.

3) 한국과학기술정보연구원과 삼성경제연구소가 공동으로 개발하였음.
제2장 선정 과정 11

<그림 2-2> 정성적 유망아이템 프로세스

- 선정준비 단계 : 미래환경전망, 환경변화의 주요 동인 도출, 유망사업 선정을 위한 키워드 도출
- 후보발굴 단계 : 미래 시나리오 작성, 요구기능니즈 도출, 대상산업의 미래 사업기술목록 작성, 유망사업 후보군 도출
- 평가선정 단계 : 평가항목별 가중치 설정, 후보사업 평가, 유망사업 선정.

○ 선정단계에서 유망성 평가기준은 매력도(시장규모 및 산업발전 단계), 영향력(신사업 창출 가능성, 사업응용 범위), 실현가능성 (국내 기술수준, 투자수준, 기타 제약요인)으로 설정하였음(<그림 2-3> 참조).
다. 정량 정성적 프로세스

○ 동 프로세스의 개발은, 상용화에 근접한 기술을 과학할 수 있는 특허 DB에 미래 유망아이템의 후보군이 존재한다는 기본 개념에서 출발함.

- 대상 특허 DB는 미국특허이며, 이 중 IPC C 코드로 한정하였음. 즉, 산업분야로 볼 경우, 화학, 금속, 바이오 산업의 영역으로 볼 수 있음.

○ 특허는 IPC라는 기술분야 체계를 따르고 있기 때문에, 이를 산
업/제품 분류 체계와 연관 지을 경우 매우 유용한 결과를 도출할 수 있음을.

- 즉, 최근 들어 급격히 부상하고 있는 특허 분류코드 및 키워드들을 파악하고 이들을 산업/제품 분류체계에 대응시킬 경우 미래 유망아이템 후보군을 도출할 수 있고, 해당 기술/산업 분야의 메가트렌드를 파악할 수 있게 된다는 의미임.
- 이는, “현 시점에서 기술혁신 활동이 활발한 기술분야와 연관된 산업/제품이 미래 유망산업/제품이 될 가능성이 높다”4)는 의미와 상통함.
- 이상과 같이 후보군이 도출되면 간단한 평가지표를 사용하여 우선순위를 결정하였음.

○ 이상의 기본 개념을 바탕으로 <표 2-1>과 같이 유망아이템 발굴 프로세스를 설계하였음5).

- 기술-산업 연계구조 및 특허 키워드 분석 등 KDD/KM 측면의 접근을 시도한 것을 특징으로 함.

4) 가능성이 높다는 측면에서 유망아이템 후보군이라는 표현을 사용하였으며, 이후의 선정 단계에서 유망아이템을 최종 발굴한다.
표 2-1 정량-정성적 유망아이템 발굴 프로세스

<table>
<thead>
<tr>
<th>단계</th>
<th>내용</th>
<th>방법론</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>분석대상 선정</td>
<td>최근 10년간 출원빈도가 급증하는 IPC 분류코드 (부상코드)와 정체되어 있는 분류코드 (정체코드)의 선정</td>
</tr>
<tr>
<td>②</td>
<td>메가트렌드 분석</td>
<td>부상코드와 정체코드의 IOM/SOU 분석을 통하여 기술혁신 추세변화가 산업에 미치는 영향을 분석</td>
</tr>
<tr>
<td>③</td>
<td>유망아이템 후보군 도출</td>
<td>부상코드 내에서, 1990년 대비 2000년에 새로이 출현한 키워드 (부상키워드) 및 이들 간의 동시 발생분석 분석결과를 대상으로 하여 산업적으로 의미있는 아이템화하여 도출</td>
</tr>
<tr>
<td>④</td>
<td>유망아이템 선정</td>
<td>유망아이템 후보군을 대상으로 메가트렌드 부합도, 시장규모, 시장성숙단계, 기술의 혁신성 등의 평가지표를 사용하여 스크리닝</td>
</tr>
</tbody>
</table>

○ 발굴된 유망아이템 후보군으로부터 평가과정을 거쳐서 최종적으로 유망아이템의 우선순위를 결정하는 과정(④)은, 아이템의
매력도 및 영향력 등을 객관적으로 가늠할 수 있는 평가 지표를 도출한 후 이에 따라 후보아이템별로 평점을 부여하고 합산하는, 평점모형 방식으로 수행하였음.

- 이 단계에서는 DB의 정량적 활용이 어려워 기존의 모형(김은선 외, 2004; 삼성경제연구소, 2005)을 간략한 형태로 적용하였음(표 2-2 참조).

<표 2-2> 유망성 평가지표별 평가기준

<table>
<thead>
<tr>
<th>평가지표</th>
<th>평가 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5점</td>
</tr>
<tr>
<td>세계 시장규모 (단위: 억 달러)</td>
<td>300 이상</td>
</tr>
<tr>
<td>발전단계</td>
<td>성장기</td>
</tr>
<tr>
<td>혁신성(6)</td>
<td>Radical (신산업창출)</td>
</tr>
<tr>
<td>메가트랜드 부합도</td>
<td>B2C화</td>
</tr>
<tr>
<td></td>
<td>바이오화</td>
</tr>
<tr>
<td></td>
<td>서비스화</td>
</tr>
</tbody>
</table>

6) 기술의 혁신성이 높음수록 미래의 신산업 창출로 연결가능성이 높을 것으로 판단하여 높은 점수를 부여
2. RFID의 선정과정

○ RFID는 IT 및 관련 산업에 속하는 아이템으로서, 앞서 제시된 프로세스 중 정성적 프로세스를 통하여 발굴되었음.

가. 유망아이템 후보군의 도출

1) IT 산업의 미래사업·기술 리스트

○ 국가과학기술지도 및 중·장기 과학기술예측 자료를 IT 산업의 미래사업·기술 리스트로 활용함.

- 국가과학기술지도(과학기술부, 2002)의 “정보·지식·기능화 사회구현” 비전에 따른 IT 관련 부문의 미래기술·사업을 기본 목록으로 사용. 국가과학기술지도의 IT관련 세부기술은 총 214개임.
- 국가과학기술지도의 목표 년도가 2012년으로 본 보고서의 목표 년도인 2015년과 비교적 근거리이므로 큰 차이는 나지 않음 것으로 판단하여 이를 후보군에 포함하였음.
- 최근 발표된『제3회 국가과학기술예측』의 정보·지식 분야의 중·장기 미래기술 목록 중 국가과학기술지도와 중복되지 않는 기술들을 포함(과학기술부, 2005). 이 중 실험 예측시기가 2015년 경 이내인 70개 기술들을 대상에 포함하였음.
- 일본 문부과학성이 실시한 제7회 기술예측보고서의「정보·통신」 및 「일렉트로닉스」 분야 중 국가과학기술지도 및 제3회
국가과학기술예측과 중복되지 않는 기술을 포함(일본문부과학성, 2002). 이 중 실험 예측시기가 2015년 경 이내인 107개 기술들만 대상에 포함하였음.

2) 환경분석을 통한 유망아이템 후보군 도출

- 015년의 유비쿼터스 환경에 필요한 요구기능·니즈 및 제약요인을 기준으로 IT 산업의 미래사업·기술 리스트로부터 유망사업 후보군을 도출하였음.

- 요구기능·니즈로부터 내용상 중복되는 것을 제외하고 총 8가지의 선별기준을 정함.

< 유비쿼터스 미래의 핵심 니즈 · 기능 >

① 실시간 · 대용량 통신 네트워크 ② 대용량 컴퓨팅
③ 정보 보안 ④ 실시간 위치확인
⑤ 원격 · 상시 건강상태 확인 · 진료 ⑥ 소형화 · 휴대성
⑦ 주택용 · 차량용 각종 기기의 지능화 ⑧ 기타 유비쿼터스 활용 서비스 · 솔루션

- 상기 8가지의 니즈를 기준으로 미래사업 · 기술의 관련성 여부를 평가하여 총 22가지의 유비쿼터스 관련 유망기술 후보군을 <표 2-3>과 같이 도출하였음.
<표 2-3> 미래 유망사업 아이템 후보군의 도출

<table>
<thead>
<tr>
<th>기능</th>
<th>미래사업·기술</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
<th>⑧</th>
</tr>
</thead>
<tbody>
<tr>
<td>표 시</td>
<td>Flexible 디스플레이</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>전자종이</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>저장</td>
<td>차세대 메모리</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>통신</td>
<td>4G 이동통신</td>
<td></td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UWB(Ultra Wideband)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>프로세싱</td>
<td>SoC</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grid 컴퓨팅</td>
<td></td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>전원</td>
<td>2차전지</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>마이크로 연료전지</td>
<td></td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>감지</td>
<td>바이오센서</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>콘텐츠</td>
<td>가상현실 시스템</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>전자화폐·금융 시스템</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>오감형 미디어 콘텐츠</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S/W Agent</td>
<td></td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>광·양자 암호</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>응용</td>
<td>착용형컴퓨터</td>
<td></td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telematics</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U헬스</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>가정용 서비스소포트</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>biometrics</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interactive TV</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFID</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주: 1) 표의 번호는 본문 밖에 있는 8가지 미래의 핵심니즈·기능의 번호임.
2) 상기 표에서 미래사업·기술 별로 8가지 핵심 니즈·기능을 실현하는 것과 관련이 있는 항목에 O 표시를 함.
나. RFID의 유망성 평가

○ 이러한, 22개 유비쿼터스 관련 후보 사업·기술에 대해 기존 자료 및 연구진의 토의를 통해 평가항목별로 평점을 부여(<표 2-4> 참조)하였음.

<표 2-4> 미래 유망사업 아이템의 선정

<table>
<thead>
<tr>
<th>유망아이템 후보군</th>
<th>총점</th>
<th>시장 규모</th>
<th>발전 단계</th>
<th>혁신성</th>
<th>융용 범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>가중치</td>
<td>1.00</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Telematics</td>
<td>4.60</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>RFID</td>
<td>4.40</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>SoC</td>
<td>4.30</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Flexible 디스플레이</td>
<td>4.20</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>마이크로 연료전지</td>
<td>4.20</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>바이오센서</td>
<td>4.20</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>S/W Agent</td>
<td>4.20</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4G 이동통신</td>
<td>4.10</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>U헬스</td>
<td>4.10</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>차세대 메모리</td>
<td>4.00</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Grid 컴퓨팅</td>
<td>3.80</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>오감형 미디어 콘텐츠</td>
<td>3.70</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>가정용서비스로봇</td>
<td>3.70</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>가상현실 시스템</td>
<td>3.60</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Interactive TV</td>
<td>3.60</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>전자증이</td>
<td>3.20</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2차전지</td>
<td>3.10</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>작용형 컴퓨터</td>
<td>3.00</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>biometrics</td>
<td>3.00</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>UWB(Ultra Wideband)</td>
<td>2.70</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>전자화폐, 금융시스템</td>
<td>2.60</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>광·양자 암호</td>
<td>2.30</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

(계속)
유망아이템 후보군	기술실험 가능성	투자 요인	제약 요인	제약요인 내용
가중치 | 0.2 | 0.1 |
Telematics | 5 | 1 |
RFID | 5 | 4 | -0.3 | 개인정보유출
SoC | 5 | 2 |
Flexible 디스플레이 | 5 | 2 |
마이크로 연료전지 | 5 | 3 |
바이오센서 | 5 | 3 |
S/W Agent | 4 | 5 |
4G 이동통신 | 5 | 1 | -0.3 | 정책, 시장의 불확실성
U헬스 | 5 | 3 | -0.3 | 법률, 제도 정비 필요
차세대 메모리 | 5 | 2 |
Grid 컴퓨팅 | 4 | 5 |
오감형 미디어 콘텐츠 | 2 | 5 |
가정용서비스로봇 | 3 | 3 | -0.3 | 안정성 문제
가상현실 시스템 | 4 | 4 |
Interactive TV | 5 | 3 |
전자종이 | 4 | 2 |
2차전지 | 5 | 3 |
착용형컴퓨터 | 3 | 3 |
biometrics | 4 | 4 | -0.3 | 윤리적 문제
UWB(Ultra Wideband) | 3 | 4 | -0.3 | 정책 불확실성
전자화폐, 금융시스템 | 5 | 5 |
광·양자 암호 | 1 | 4 |

○ 이 중, RFID는 다음과 같이 평점을 부여받아 2015년 유망아이템으로 선정(표 2.5 참조)되었음.
제2장 선정 과정

<표 2-5> RFID의 평가내용

<table>
<thead>
<tr>
<th>평가항목</th>
<th>평점</th>
<th>가중치</th>
<th>가중평점</th>
<th>평가내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>시장규모</td>
<td>3</td>
<td>0.1</td>
<td>0.3</td>
<td>2015년 세계시장 수십억 달러</td>
</tr>
<tr>
<td>발전단계</td>
<td>5</td>
<td>0.2</td>
<td>1.0</td>
<td>2015년 성장기에 접어듬</td>
</tr>
<tr>
<td>혁신성</td>
<td>5</td>
<td>0.2</td>
<td>1.0</td>
<td>Disruptive technology, 기존산업 재편</td>
</tr>
<tr>
<td>응용범위</td>
<td>5</td>
<td>0.2</td>
<td>1.0</td>
<td>다양한 응용시장 창출</td>
</tr>
<tr>
<td>기술실현가능성</td>
<td>5</td>
<td>0.2</td>
<td>1.0</td>
<td>선진국대비 90%의 기술수준</td>
</tr>
<tr>
<td>투자요인</td>
<td>4</td>
<td>0.1</td>
<td>0.4</td>
<td>적정수준의 투자규모</td>
</tr>
<tr>
<td>제약요인</td>
<td>-0.3</td>
<td>-0.3</td>
<td></td>
<td>개인정보 유출</td>
</tr>
<tr>
<td>합 계</td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
</tr>
</tbody>
</table>
제3장 산업 시장 분석

1. 개요 및 특성

○ RFID는 유비쿼터스 컴퓨팅의 기반기술의 하나인 센싱 기술로서 파악되어, 해외 주요국들의 경우 RFID를 비즈니스 영역에 확산시키고자 하는 노력이 정부 및 민간부문을 중심으로 지속적으로 추진되어 왔으며 주로 물류・유통 부문에서의 확산 노력이 두드러짐.

- 인식률 제고, 국가간/기기간 표준화, ITA의 다른 구성요소들과의 연동가능성 등 향후 기술적 보완이 지속적으로 필요함.

○ RFID의 상품 특성 등을 고려할 때, 일반인들이 흔히 알 수 있는 최종소비재로서의 특성보다는 중간재, 산업재로서의 특성이 강함.

- RFID는 센싱 기술로서 산업재로서의 특성이 강하기 때문에 소매/유통기업에 있어서는 재고수준 관리 측면에서 가시적 효과를 기대할 수 있으나, 여타 사업영역에서의 효과는 아직 불투명하다는 주장이 제기되기도 하였음.7)

7) Gaughan, D. "RFID Hype Collides with Reality", Supply Chain Management
○ 현재 RFID의 기술적인 문제로 인한 투자성과가 불확실함에도 불구하고 시범사업 및 비즈니스 영역에의 도입노력이 계속되고 있는 것은 잠재적 파급효과가 매우 광범위하기 때문임. 8)

○ 현재 가장 주목을 받고 있는 RFID는 Class 0 ~ 1의 단순화된 인식매체로서의 RFID이지만 RFID의 기술수준이 발전함에 따라 점차 비즈니스 영역에 Class 2 ~ 5 또한 응용될 것으로 보이며, RFID의 파급효과 영역 또한 In/Outbound Logistics등 기업의 가치사슬의 본질적 활동에서 R&D, SI등 기업의 부가적 활동영역으로, 물류·유통 산업군에서 다양한 산업군으로 확대될 것으로 전망됨.

○ 향후 유비쿼터스 컴퓨팅 환경의 도래시 RFID는 기존에 인간에 의해 점유되어 왔던 ‘인식’이라는 영역을 분리해 낼 수 있을 뿐 아니라 그로인한 파급 효과는 상당할 것으로 판단됨.

2. 동향 및 전망

가. 연구개발 동향

○ 현재 RFID 관련 연구개발 및 표준화 이슈로는 RFID에 사용될

주파수를 확정하는 문제 및 USN네트워크와 RFID 칩간 소통을 위한 각종 기술표준을 마련하는 것이 논의되고 있음.

1) 기초연구의 흐름

○ RFID의 기술개발 흐름은 미국 및 EU와 일본의 의해 양분됨.

- 미국 및 EU의 연구개발흐름은, RFID칩의 ‘내재성’을 강조하는 데 주안점을 둔.
- 이는 모든 사물을 객채로 인식하고 사물의 내부에 RFID칩을 삽입함으로써 사람이 사물을 이용함에 있어 편의성을 극대화 하고 비용을 절약하고자 하는 측면임.
- 일본은 모든 사물의 내부에 초소형 RFID칩을 삽입하여 사람과 사물, 사물과 사물간 네트워크를 구성한다는 주로 ‘네트워크성’에 역점을 둔.

○ 두 흐름 모두 궁극적으로 USN네트워크의 센서로 RFID를 파악하고 있다는 점에서 해석의 큰 흐름은 동일함.

○ 미국은 국방부 산하 고등연구 계획국(DARPA)과 국립 표준 기술원(NIST)이 대학연구소 및 민간기업의 유비쿼터스 프로젝트 자금을 지원하고 이에 HP, IBM, MS등의 민간기업과 MIT, CMU, 워싱턴 대학 등이 적극적으로 동참하는 형태로 유비쿼터스 컴퓨팅 프로젝트를 진행함.

○ 일본은 자국이 국제 경쟁력을 확보하고 있는 모바일, 광섬유, 가전, IPv6, 정보통신 기술과 연계시킨 ‘포스트 e-Japan’전략 차원에서 일본 총무성의 지원 하에 TRON(The Realtime Operating System Nucleus)프로젝트를 중심으로 민·관·학계가 다양한 컨소시엄을 구성하여 연구를 진행함.

- 기반기술 개발 이외에도 응용분야 및 비즈니스 영역에의 확산에 큰 관심을 보이며9), 다양한 실증실험과 더불어, RFID 태그 가격의 저가화10), 다양한 산업분야에의 적응노력 지속, RFID 도입 시 발생될 프라이버시/보안문제에 대한 해결책 마련 노력11)이 지속되고 있음.

○ 국내 RFID관련 기술개발은 정보통신부, 산업자원부 등 정부기관 및 한국전산원, KISDI, ETRI 등 국제연구기관을 주도로 추진하고 있으며, 국제 공동연구를 통해 기술력 차이를 극복하고, 상용화를 위해 산업체와 공동개발을 추진한다는 체계임.

제3장 산업 시장 분석

특히 최근 정보통신부가 2004년 ‘u-센서 네트워크 계획’을 발표한데 이어, 2005년에는 송도 u-City 건설계획12) 등을 발표함으로써 시장에서의 RFID 확산에 대한 관심이 크게 고조되어 있는 상황임.

나. 표준화 동향

○ RFID의 국제표준은 ISO(국제 표준화 기구)와 IEC(국제 전기표준화의 합동기술위원회(JTC1:Joint Technical Committee 1)의 SC1의 WG4에서 추진되고 있고 세부적으로는 SG31/WG4내에 다시 4개의 하위 부서가 있어 분야별로 표준화가 진행되고 있음.

○ 최근 각 국가별로 RFID 용 주파수가 분배되고 있으며, 기술표준화 노력이 지속되고 있음(표 3-1 참조).

- 한국 인터넷진흥원(NIDA)은 미국과 일본 등이 독자적으로 개발해 사용 중인 RFID 정보검색용 코드를 통합한 ‘다중디렉토리시스템(MDS)’의 개발을 최근 완료함.

- NIDA는 2005년 중에 MDS를 운용할 국제기구로 유비쿼터스 정보센터를 설립하고, 이곳을 통해 국가간 검색서비스 연동 표준화 및 국내외 검색서비스 연동 등을 추진할 방침에 있으며, 2007년에는 MDS의 본격적인 상용화가 이루어질 전망임.

12) 인천정보산업진흥원, 송도 U-City 구축방안, 2005.
표 3-1> 각 국가별 UHF RFID용 주파수 분배 현황

<table>
<thead>
<tr>
<th>국가/지역</th>
<th>UHF RFID 주파수 분배 현황</th>
<th>최대출력제한(EIRP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>미 국</td>
<td>902 ~ 928 MHz</td>
<td>4 W (EIRP)</td>
</tr>
<tr>
<td>EU</td>
<td>868 ~ 870 MHz</td>
<td>500 mW</td>
</tr>
<tr>
<td>호주</td>
<td>918 ~ 926 MHz</td>
<td>1 W (EIRP)</td>
</tr>
<tr>
<td>브루네이</td>
<td>866 ~ 869 MHz, 923 ~ 925 MHz</td>
<td>500mW, 2W</td>
</tr>
<tr>
<td>홍콩</td>
<td>865 ~ 868 MHz, 920 ~ 925 MHz</td>
<td>2W, 4W</td>
</tr>
<tr>
<td>인도네시아</td>
<td>866 ~ 869 MHz(검토 중), 923 ~ 925 MHz(검토 중)</td>
<td>500mW, 2W</td>
</tr>
<tr>
<td>한 국*</td>
<td>433.6 ~ 434.1 MHz, 908.5 ~ 914 MHz</td>
<td>**</td>
</tr>
<tr>
<td>일본</td>
<td>952 ~ 954 MHz***</td>
<td>-</td>
</tr>
<tr>
<td>말레이시아</td>
<td>902 ~ 928 MHz, 902 ~ 928 MHz</td>
<td>50mW</td>
</tr>
<tr>
<td>싱가포르</td>
<td>902 ~ 928 MHz</td>
<td>500mW, 2W</td>
</tr>
</tbody>
</table>

주* : 정보통신부 고시 2004-34, 69에 의거 확정됨.
** : 최근 정보통신부 고시에 따른 기술기준(안)이 발표된 바 있음.
*** : 일본 총무성 2005. 1

○ 무선바코드 체계와 관련해서 유럽과 미국의 바코드 통합관리기구인 EAN·UCC는 860-930MHz대역 ISO 표준 기반 무선바코드체계(GTAG ; Global TAG)의 정립을 위해 태그에 저장되는 바코드 데이터 포맷의 표준화를 추진하고 있는데, MIT Auto ID센터의 ‘EPC’를 유력한 대안으로 파악됨.

○ 일본의 경우에는 유비쿼터스 ID센터에서 사물이나 소프트웨어, 서비스 등에도 ID를 부여할 수 있는 코드체계로 ‘유비쿼터스
ID’를 일본 독자의 산업표준으로 제안함.

- 유비쿼터스 ID는 보안성을 중요시하며, 메모리나 CPU의 존재여부와 무관하게 적용 가능하고 기존의 RFID에서부터 스마트 카드 등의 모든 초소형 칩까지 적용가능하게 설계함.

○ 각 국가별 RFID 관련 주요 기술개발 및 표준화 노력이 가시화됨에 따라 특히 융용기술 부문에서의 국내 기술표준 개발 노력을 지속할은 물론 국제표준 확정 동향에도 관심을 지속해야 할 것으로 판단됨.

다. 비즈니스 영역 확산 동향

○ 미국의 경우, 기술개발 및 비즈니스 영역에의 적용이 가장 활발히 이루어지고 있음.

- 특히 각 기술영역의 표준화 선도와 보안 및 프라이버시 보호 모듈의 개발 등 융용분야 중심의 기술개발 방향을 주도
- 주로 물류, 유통부문을 중심으로 RFID 도입노력이 지속됨.
○ 일본은 자국의 강점인 제조업과 정밀 가공 기술 등을 바탕으로 시너지 효과를 창출할 수 있는 RFID 기기 산업에 중점을 두어 옴.

- 최근에는 이러한 기기산업의 성과를 바탕으로 독자적인 기술 표준의 도입, 오픈 플랫폼 공동 개발 등 업체들 간 연구 협력체계가 이루어지고 있음.

- 최근 일본의 RFID 도입과 관련하여 ‘히바키 프로젝트’와 더불어 이체를 띄고 있는 호름은 RFID의 실제 비즈니스 영역 에의 도입 가능성에 대한 검토와 더불어 다른 통신서비스와 의 연계 등 다각적 측면에서의 RFID 도입 가능성 검토가 이루어지고 있는 흐름임.

○ 최근까지 국내 RFID 관련 Business 확산사례는 거의 전무한 실정이었으나, 정부 및 민간부문을 중심으로 RFID 확산노력이 매우 빠른 속도로 진행되고 있음.

○ 우리나라는의 RFID 관련 기기산업은 핵심 칩을 해외에서 수입하여 제조공하거나 주요부품을 수입하여 단순 조립하는 수준으로 RFID의 핵심 칩은 국내의 반도체 회사인 삼성전자와 하이닉스가 공급하고 있을 뿐이며, 대부분은 필립스, Migrate(Micron), 임피니온(지멘스)등 외국 업체에 전량 의존함.

- 한국전산원에서는 ’04 USN구축 기본계획을 확정하고 세부추 진계획을 발표한데 이어, ’04년 6월 파급효과 및 성공 가능성
등을 고려하여 RFID 시범사업으로 5개 과제를 선정하여 시범사업을 추진하고 있으며, 현재 '05년도 RFID 시범사업을 추진 중임.
- 한국RFID/USN협회는 지난 2004년 5월 '국내외 RFID 추진현황 및 응용사례' 보고서를 발표하였으며, 여기에는 RFID 도입에 관한 국내 14개 적용가능 모델 및 국내 RFID 도입사례를 소개함.

라. 시장 전망 및 파급효과 분석

○ RFID시장은 세계시장의 경우 2005년 30억불 규모에서 2010년에는 100억불 규모로, 국내시장은 2003년 660억 원 규모에서 2007년 3,180억 원 규모로 성장할 것으로 예측됨(<표 3-2> 참조).
- 이는 RFID시장이 1996년 6억 달러에서 매년 25%이상 성장한 추세에 따른 것으로 향후 이러한 추세를 계속 보일 것임.
- 국내시장의 경우 구체적인 전망치가 나오지 않은 상태이기에 경제협력개발기구(OECD) 자료를 토대로 세계 IT시장에서의 국내시장 점유율 5.2%를 근거로 Top-Down방식으로 추정함.
- 정보통신부는 2007년까지 세계 1위의 U-Life 기술을 확보하는 것을 목표로 세계 RFID 및 U-센서 네트워크 시장의 5%(약 9.5억 달러)를 점유하고 실생활에서의 적용을 위해 기반 구축을 완료한다는 계획을 가지고 있음.
- 또한, 2010년에는 세계 RFID 및 U-센서 네트워크 시장의 7%(53.7억 달러)를 점유한다는 목표를 가지고 있음.
표 3-2 전 세계 RFID 시장 전망

<table>
<thead>
<tr>
<th>구분</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>세계시장</td>
<td>11</td>
<td>20</td>
<td>30</td>
<td>41</td>
<td>53</td>
</tr>
<tr>
<td>국내시장</td>
<td>660</td>
<td>1,200</td>
<td>1,800</td>
<td>2,460</td>
<td>3,180</td>
</tr>
</tbody>
</table>

주* : 세계시장의 5.2%로 국내시장을 추정

○ 경제적 파급효과 면에서는 총생산유발 18조 2,171억 원, 총 수출유발 4조 729억 원에 이르고 총 고용창출 11만 3천여 명의 효과가 있을 것으로 기대됨(<그림 3-1> 참조). 13)

<그림 3-1> RFID 서비스 효과분석

13) 정보통신부, IT839 신규서비스 경제적 파급효과 분석, 발표자료, 2004를 재정리.
제3장 산업 시장 분석

마. RFID 확산 촉진요인: 태그가격

○ RFID의 확산을 촉진하기 위한 요인으로는 RFID 태그 가격의 하락, RFID 태그 인식률문제의 해결, 그리고 Legacy system과의 연계가능성 검토, RFID 도입 성공사례 발굴 등이 시급할 것으로 판단됨.

○ RFID 태그가격의 경우에는 5센트 미만으로 하락시 광범위한 산업영역에 확산될 전망이나, 연구기관마다 완만한 가격하락 가능성, 급격한 가격하락 가능성간 주장이 엇갈리고 있어 추이를 주시할 필요가 있음.

○ RFID 확산의 요망 태그가격 수준은 5센트 이하일 것임.

- 산업자원부, 대한상공회의소 등의 예측에 따르면, 2004년 RFID 주파수 대역에 관한 국제 표준이 결정되고 RFID chip 가격이 5센트대로 하락하면 주요 산업분야로 급속히 확산될 것으로 예측됨.

○ 기술발전 추세에 따라 RFID 태그가격의 급격한 가격하락 가능성이 높음.

- 2003년 일본 Hatachi에서는 ‘μ-Chip’이라는 상품명으로 7센트 대역의 RFID 태그가 출시됨.
- 일본의 히바키 프로젝트에 따르면 2006년까지 5센트 미만의 태그를 양산할 계획임.

<그림 3-2> RFID-chip 가격변화추이

○ 제조기술의 복잡성에 따른 비용 및 시장 수요의 불투명성으로 RFID 태그가격의 완만한 가격하락 가능성이 검토됨.
제3장 산업 시장 분석

- 2004년 2월 Forrester에서는 미국 내 주요한 RFID 태그 제조사와 소비자들의 면접조사를 통해 RFID 태그의 가격에 대해 제조기술의 복잡성, 조립프로세스의비용이 상당한 점, 그리고 수요의 불투명성으로 인해 향후 8년 이내에 RFID 태그의 가격이 5센트 미만으로 벗어지지 않을 것이라 전망함(<표 3-3> 참조).

Forrester의 모델에 따르면 RFID 태그의 가격은 향후 하락할 전망이지만, 기존 연구에서 밝힌 바와 같이 급격한 하락 추세가 이어지는 대신 연평균 9%씩 하락하여 2012년에는 Class 0~1 RFID 태그의 경우 가격이 26센트 정도까지 하락하는 정도에 그칠 것으로 판단함(<그림 3-3> 참조).

바. RFID 도입성과

○ RFID 도입시 고려사항으로 비용절감 및 신규수익 창출 등 경
제적 사항과 기술특성상의 사항 등이 거론됨.

<그림 3-3> Class 0,1 RFID 태그 가격변화추이 예측

(단위: 유로)

- RFID의 도입의사결정과 관련하여 의사결정자의 가장 큰 관심사는 RFID 도입으로 어떤 비용절감 또는 신규수익 창출, 대고객 서비스 향상의 효과가 있을지에 관한 부분임.
- 아직 이러한 사항이 본격적으로 검토되지는 못하나, 이는 국내외 시범사업 결과 및 성공사례가 속속 알려짐에 따라 자연스럽게 해결될 것으로 판단됨.
- RFID 태그는 부착위치, 부착방향 및 부착물건의 특성(예를 들어, 금속/액체 등)에 따라 인식률에 큰 차이를 나타내고 있음.
- 이는 전파를 이용하는 기술특성상 불가피한 것으로 판단되나
향후 실증실험이 계속되면서 이 부분에 대한 보완노력이 지속될 전망임.

- RFID 태그는 인식기술이라는 기술특성상 정보시스템과의 연계없이 독자적인 사업활동은 사실상 불가능하다고 판단됨.
- 2005년 RFID를 도입한 Wal-Mart의 경우 기존 Legacy system과의 연계가능성을 신중히 검토하였던 부분은 시사점이 크다고 판단됨.

○ RFID 도입의 정량적 성과는 전체비용의 10% 절감 및 기업규모에 따라 1억 달러 수준의 효과를 보일 것으로 예상됨.

- 최근 RFID를 도입한 월마트에서는 RFID의 도입으로 인해 전체비용의 10%정도를 절감할 수 있을 것이라는 전망을 내놓은바 있음.
- ABI의 설문조사 결과에 따르면, RFID 도입으로 인해 기업은 규모에 따라 최고 1억 달러 이상의 신규 수익을 창출 할 수 있을 것으로 조사됨(<그림 3-4> 참조).

- 또한, 현재 RFID를 비즈니스 영역에 도입하여 시범사업을 진행 중인 업체들을 대상으로 조사한 만족도 설문에서도 RFID는 도입비용 측면에서 뿐만 아니라 도입으로 인한 성과측면
<그림 3-4> RFID 관련 신규 발생 수익(하드웨어/소프트웨어 포함)

에서도 비교적 만족스럽다는 응답을 얻은 것으로 조사됨.
- 일본의 경우에도 RFID의 파급효과가 기업의 경쟁력 향상에 상당한 도움이 될 것을 기대하고 있음.
- 일본 의류업계의 시범사업 추진 결과에 따르면, 의류업계 매출액 8조엔 중, 물류비의 비중은 4,000억 엔(매출액의 5%), 인건비 1,200억 엔(매출액의 1.5%)이며, RFID의 도입으로 이 부분에 대한 상당한 파급효과를 얻을 수 있을 것으로 파악됨.
- 특히 인건비 항목의 경우 인건비중 70%가 입·출하 작업에 소요됨으로써 RFID의 도입으로 입·출하 작업의 프로세스가 보다 정확하고 효율적으로 변화하면서 이 부분에 대한 비용이 크게 감소할 것으로 전망됨.

○ RFID의 도입의 정성적 성과

- 국내 RFID의 도입으로 인해 기업은 각 가치사슬 영역에 있어 리드타임 감소 및 정확성 증가 등 업무 효율성 증가를 필요
수 있으며, 이를 통해 물류, 생산, 자산관리, 유통망 및 고객 관리, 기획/개발 영역 등 부문에 효과를 나타내는 것으로 조사됨(<표 3-4> 참조).

<table>
<thead>
<tr>
<th>부문</th>
<th>효 과</th>
</tr>
</thead>
</table>
| 물류/운송 부문| · Supply chain상의 각각의 주체가 물류개선의 효과를 얻을 수 있음
 | · 속도/정확도 향상, 경비절감 및 고객서비스로 인한 물류비용 절감 |
| 생산 부문 | · 입출고관리 자동화 및 실시간 재고자동관리(JIT) 가능
 | · 재고관리의 통합화 및 가속화 (재고관리 작업시간 소멸, 설비이동 등 데이터 무결성 향상) |
| 공정 관리 | · 작업 시간관리, 제품품 수준관리, 제품 처리량 증가 가능
 | · 실시간 품질관리 가능, 수율상승으로 인한 부대효과(사례의 경 우 ROI 150%) |
| 자산관리 | · 고정자산 관리의 정보 일원화 및 정보품질의 향상
 | · Production cost를 제외한 대부분의 자산관리 영역에서 절감효과를 보여 총 비용대비 15~35%의 원가절감 효과를 나타냄 |
| 유통망관리 | · 식품 안전성/신뢰성 제고
 | · 모방상품 유통제한(전체시장의 30%)로 인한 상품차별화
 | · 부정 유통단계 불식/위조 제품 유통으로 인한 손실(매출의 10%)감소 |
| 기획/관리 | · 업무 정확성/신속성/편리성/즉시성 제고(간접비 절감 등으로 인한 ROI : 244%) |
| 개발 | · 4D CAD건설 프로젝트 관리를 위한 정보시스템 개발 기반 확립
 | · SCM 구축 및 운영시스템에 연계, 각 모듈의 통합구현, 실시간 데이터공유
 | · GIS, MRO, HRM 시스템 등 시스템 확장 가능 |

<표 3-4> 국내외 시범사업 사례의 주요 성과결과
고객지원/서비스

| 기타(보안) | 비문보관 및 통제가능성 증가로 인한 기밀유지 완결성 향상 |

자료: 한국 RFID 협회, 국내외 RFID 추진현황 및 응용사례, 2004를 종합정리함.
제4장 이슈 분석

1. RFID 활성화의 기업측면에서의 시사점

가. RFID 성공사례 검토 및 시사점 도출 필요

○ 현재 주목을 받고 있는 RFID의 도입의사결정에는 RFID 도입의 성과평가 및 성공사례를 통한 시사점 도출이 선행되어야만 할 것임.

- 현재 RFID는 아직 기술이 완전히 성숙기에 접어들지 못한 채, 기술적, 비즈니스 도입측면에서 여러 보완책이 필요한 실정임.

- 이러한점에도 불구하고, 관련 사업자들의 서비스 도입에 대한 ‘관심’ 수준이 매우 높아 실질적인 투자 의사 결정이 왜곡될 가능성이 존재하는 등 시장에서의 낙관적 기대에 대한 버블이 발생할 가능성이 존재함.

- 일본, 유럽 등의 RFID 도입사례에서는 우선 기존의 원가구성 비를 명확히 측정하고 RFID의 도입효과에 대해 주로 정량 데이터를 이용하여 정확하게 성과를 측정하여, 이렇게 도출된 성과분석 자료를 바탕으로 투자 의사결정을 내립으로써 투자
의사결정의 적절성 및 효율성을 극대화하고 있는 것으로 조사됨.
- Wal-Mart사례에 따르면 RFID의 실제 적용부분에 있어 아직도 상당부분 보완이 필요(예를 들어, 인식률 등)하며, RFID 도입을 추진하고 있는 기업들은 이를 감안하여 성공사례를 통한 시사점 도출 노력을 계속하여야 할 것임.

나. USN 네트워크와의 연계가능성 검토

○ USN 네트워크의 센서로서, ITA의 통제영역에 대한 인식기술 영역으로서, RFID는 반드시 기업의 정보시스템과 유기적으로 연동되어야만 성과를 극대화 할 수 있음.

- 궁극적으로 RFID는 기존 ITA의 구성요소들과의 유기적 연계를 통해 Vertical Integration 등의 효과를 극대화할 수 있으며, 단순한 도입만으로 RFID의 ‘만병통치약’으로서의 효과를 기대하기는 힘들다.
- RFID의 인식기술로서의 특성 및 산업계로서의 성격으로 인해 향후 RFID가 확산되어 감에 따라, RFID의 주요 시장의 하나로 SI시장 등 RFID와 네트워크를 연결하는 산업이 발전할 것으로 판단됨.

다. RFID를 이용한 다양한 비즈니스 모델 개발이 필요

○ RFID의 도입영역은 단기간에는 물류・유통 부문이 될 것으로 보이나, 중장기적으로 정보시스템과의 연계를 통해 응용영역이
확대되어 나갈 것으로 보여 다양한 비즈니스 모델 개발이 요구됨.

- 현재 RFID는 물류 · 유통 과정의 가시성을 극대화하기 위한 수단으로 사용되고 있으나, 향후 기술 발전 추세에 따라 적용 가능 영역 또한 계속적으로 확대되어 나갈 것임.

2. RFID 활성화의 정책측면에서의 시사점

가. 선택적 산업육성책

○ RFID의 기능성은 고려할 때 RFID의 적용분야가 매우 광범위할 뿐만 아니라 가격측면에서도 RFID의 가격 하락 속도와 관련하여 전망이 엇갈리고 있어, RFID 가격의 저가화가 필수적인 RFID 관련 시장 활성화에 상당 부분 제한점이 있을 가능성이 존재함.

- 따라서, 모든 부분에서 RFID에 관한 산업을 육성하는 것은 선택과 집중의 측면에서 설득력에 한계를 지님.

○ 이에 따라, RFID 관련 산업 육성책에는 다음의 세 가지 방안이 고려 될 수 있음.

- 보다 특화되고 고부가 가치를 창출할 수 있는 비즈니스 모델을 개발하여 부가가치를 창출하는 방안으로, 기기산업보다는
서비스 산업에 집중하여 이를 바탕으로 기술의 상업화에 보다 역점을 둔.
- 단계적이며 지속적인 RFID 연구·개발 진행 방안으로, 우리나라가 가지고 있는 정보통신기술에 대한 노하우와 뛰어난 기반 인프라를 바탕으로 RFID 확산을 위한 핵심 기술 및 노하우 축적에 주안점을 둔.
- 특정 RFID 태그에 대한 집중적인 기술 검토, 핵심 기술 개발 및 육성을 통해 제한된 태그 영역에서 시장에 선도 진입하는 방안으로, 특히 부가가치가 높은 기술영역을 검토하여 해당 분야에 대한 집중적 투자 및 핵심기술 개발로 전체 RFID 산업을 동반 발전시키는데 중점을 둔.
- 각 방안별 장단점이 존재하므로, 방안의 선택 및 실행에 있어 충분한 토의가 이루어져야만 함.

나. 정부주도형 시범사업 실시 및 산/학/연 공동 연구 추진 필요

○ 정부주도형 RFID에 시범사업을 통한 산업 활성화에 역점을 둔.

- 정부가 추진하고 있는 시범사업을 통해 전자정부로서 대민 서비스의 효율성을 극대화 할 뿐만 아니라, RFID의 수요를 창출하여 RFID 산업 발전에 활력을 주입하고, 나아가 시범사업의 경험을 바탕으로 RFID의 효과에 대한 볼확실성을 감소시켜 RFID 산업을 활성화시키는 부수적인 효과를 가져와야 함.
- 현재 정부기관 주도로 이루어지고 있는 시범사업 사례결과를

...
면밀히 검토하여, 민간부분에서 각 영역별 Best Practice를 발굴하여 조기에 RFID 도입을 안정화해야 함.

- RFID 활성화와 관련된 산/학/연 공동연구 및 연구결과 공유를 통해 RFID 활성화에 기여하도록 함.

- 일본 경제산업성과 RFID 개발 업체 및 의류/도서/물류 등 잡계 RFID 사용 업계 등 100개사 가량이 컨소시엄으로 참가하여 2006년 중반까지 5엔(약 50원) 이하의 RFID 칩을 민관공동으로 개발해 전 세계 보급에 나고자 한다는 ‘히바키 프로젝트’ 등이 추진 중임.
- 이미 미국, 일본 등의 선진국에서는 RFID 기술개발의 초기 단계부터 현재까지 Auto ID센터나 TRON프로젝트 등 정부와 학계 및 민간기업이 컨소시엄을 구성하여 연구결과를 공유하고 있음.
- 공동 연구 프로젝트 수행의 장점으로는 기술개발의 역량을 집중하여 조속한 기술개발의 가능성이 높아진다는 점, 중복투자 위험성이 줄어드는 점, 그리고 정보공유를 통한 기술 발전의 효율성이 높아진다는 점 등이 있음.
- 단점으로는 공동연구의 특성상 연구에 대한 인센티브가 제한될 수 있어 연구개발의 장점이 줄어들 수 있다는 점, 그리고 기술개발의 성과에 대한 분배문제가 제기될 수 있다는 점 등이 있음.
3. RFID 기술 개발 측면에서의 시사점

○ RFID의 주파수를 사용하는 기술특성상 아직 일부 물질특성 및 자기 등이 인식률에 영향을 미칠 수 있으며, 부착위치/방향에 따라 각 제품별, 각 기기별 인식률의 차이가 나타날 수 있는 등 환경에 따라 RFID 인식률이 떨어질 수 있는 가능성이 존재함.

- RFID Alliance Lab(2005)에 따르면, 시판되고 있는 RFID 태그의 인식률을 반복 측정하는 방법의 실험실 실험을 통해, RFID는 환경 요인뿐만 아니라 태그 칩들의 성능차이에서도 나타나고 있음이 밝혀짐.
- 간섭을 배제하여 RFID의 인식률을 효과적으로 올릴 수 있는 기술방안 연구가 시급함.

○ RFID는 궁극적으로 USN의 센서로서 역할을 수행할 것이기 때문에 USN과의 원활한 소통 방안 및 프로토콜 등 관련 기술 표준화 노력이 시급함.

- 최근 USN과의 소통을 고려한 기술개발 노력이 강추되고 있는 것은 매우 고무적인 현상임.
제 5장
결 론

○ RFID는 유비쿼터스 컴퓨팅의 기반기술의 하나인 센싱 기술로서 과학연구 해외 주요국들의 경우 RFID를 비즈니스 영역에 확산시키고자 하는 노력이 정부 및 민간부문을 중심으로 지속적으로 추진되어 왔으며 주로 물류·유통 부문에서의 확산 노력이 두드러짐.

○ 현재 RFID의 도입의사 결정과 관련되어 불확실성이 매우 높으나, RFID 도입이 성공할 경우 기업의 경쟁력 강화 및 원가절감에 영향력 파급효과를 미칠 수 있어 RFID 시범 사업 추진 등 RFID 활성화 노력이 경주되고 있음.

○ RFID시장은 세계시장의 경우 2005년 30억불 규모에서 2010년에는 100억불 규모로, 국내시장은 2003년 660억 원 규모에서
2007년 3,180억 원 규모로 성장할 것으로 예측되는 등 RFID 관련 산업은 급속히 발전할 것으로 전망됨.

○ RFID 활성화를 위한 기업측면에서의 시사점으로는 RFID 성공 사례 및 시사점 도출 노력 필요, USN네트워크와의 연계가능 성 검토, 전사적 영역으로 RFID의 파급효과가 확대되어감에 따른 다양한 비즈니스 모델 발굴 필요 등이 제기될 수 있음.

○ 정책 측면에서의 시사점으로는 선택적 산업육성책, 정부주도형 시범사업 실시 및 산/학/연 공동 연구 추진 필요 등을 들 수 있음.

○ 기술적 해결과제로는 간섭을 배제하여 RFID의 인식률을 효과적으로 올릴 수 있는 기술방안 연구, USN과의 원활한 소통 방안 및 프로토콜 등 관련 기술 표준화 노력 필요 등을 지적할 수 있음.
참고문헌

4. 과학기술부, 제3회 과학기술예측조사, 2005.
11. 윤병운, 특히 분석을 통한 기술 지식의 관리와 신기술 개발 방법
12. 이은곤, RFID 확산의 파급 영역, 시범사업 추진 성과 및 전망, 정보통신정책, 2004a.
13. 이은곤, RFID 확산전망 및 시사점 - 환경분석, 가격전망 및 정책적 시사점, 정보통신정책, 2004b.
15. 일본 문부과학성 과학기술정책연구소, 미래공학연구소, 한국과학기술정보연구원(역), 2030년의 과학기술, 2002.
18. 한국전자통신연구원, 시범사업 추진현황 및 수요조사 과제발굴 계획(안), 2004.
21. Accenture, RFID Executive Overview, 2004