2003 기술산업정보분석

자동차용 에어컨

Vehicle Air-condition

구영덕, 김강희, 권영일

한국과학기술정보연구원
머리말

21세기 들어 세계의 폐리다임은 정보사회를 거쳐 지식사회로 급속히 이동해 가고 있으며, 기업의 활동무대는 세계로 넓어지고 있고, 이제 디지털 네트워크 경제의 시대가 도래하고 있습니다.

또한, IT, BT, NT 등 지식혁명과 기술혁신이 급속도로 진행되는 가운데, 이제는 누가 뻣리, 보다 정확한 정보를 입수하여 얼마나 효과적으로 활용하는가 하는 것이 국가 경쟁력 강화의 관건이 되고 있습니다.

이러한 시대적 변화에 능동적으로 대처하기 위하여 한국과학기술정보연구원(KISTI)은 국내외 주요 과학·기술(아이템)에 대한 정보를 심층 분석하여 산학연관에 제공함으로써 국가 과학·기술정보 확산과 국제 경쟁력 강화에 노력하고 있습니다.

이러한 사업의 일환으로 출간하는 자동차용 에어컨은 공기조화 (Air Conditioning)의 4대 요소인 공기의 온도, 습도, 기류 및 창정도를 적절히 조화시켜 외부 열부하로부터 차량의 실내온도를 실외보다 낮게 유지시키며 실내 환경을 가장 최적의 상태로 유지시키는 것입니 다.

지금까지 자동차용 에어컨은 주로 기술적 측면에서 많은 발전을 거듭하였지만, 앞으로는 에너지 효율, 친환경적 측면, 탑승객의 침적 성과 안정성 항상과 같은 인간 친화적인 측면에서의 기술 개발이 필연적이 추세입니다.

에너지 효율 측면에서는 연비 저감에 밀접한 구성 부품의 고효율화와 경량화가 지속적으로 요구되는 추세이며, 친환경적인 측면에서는 사용량화의 재검토 및 대체 냉매의 개발과 대체 냉매 적용에 따른 부
품 기술의 대응이 필요합니다. 탑승객의 쾌적성과 안전성 측면은 항후 가장 관심이 주목되는 기술 분야로서 탑승객의 기호와 태양 일사량과 일사각의 변화에 따른 다중 온도 제어 기술에 대한 연구가 활발히 진행될 전망입니다.
본 보고서는 연구개발 동향분석, 특허정보분석, 산업 및 시장분석을 통해 자동차용 에어컨에 대한 체계적이고 심도 있는 분석정보를 제공하고자 노력하였으며, 본 연구의 결과가 국가 과학기술정보의 확산 및 국가 경쟁력 증대에 작으나마 도움이 되었으면 합니다.
남으로 본 보고서는 구영탁, 김강희, 권영일 연구원이 집필한 것으로 노고에 깊이 감사드리며, 본 보고서에 수록된 내용은 연구자 개인의 의견으로서 한국과학기술정보연구원의 공식의견이 아님을 밝혀두고자 합니다.

2003. 6.
한국과학기술정보연구원
원장 조영화
목차

제 1장 서 론 .. 1

1. 연구의 개요 및 필요성 .. 1
2. 연구의 목적 ... 2
3. 연구의 방법 ... 2

제 2장 기술동향 분석 .. 5

1. 기술의 개요 .. 5
 가. 자동차 에어컨의 역사 .. 5
 나. 자동차 에어컨의 목적 .. 7
 다. 자동차 에어컨의 구성 .. 7
2. 자동차 에어컨의 주요 구성품 및 특성 8
 가. 자동차 에어컨 시스템 .. 8
 (1) 구성 방식에 의한 분류 .. 8
 (2) 제어 방식에 따른 분류 ... 10
 나. 자동차 에어컨의 주요 구성품과 특성 11
 (1) 압축기 ... 11
 (2) 음축기 ... 14
 (3) 증발기 ... 14
 (4) 팽창 밸브 .. 15
 (5) 오리피스 튜브 ... 16
제 3 장 특허정보 분석 ... 37

1. 특허정보 조사 .. 37
 가. 이용 데이터베이스 ... 37
 나. 조사의 범위 및 결과 ... 37
2. 특허정보 분석 .. 42
 가. 해외 .. 42
 (1) 미국 ... 42
 (2) 유럽 ... 46
 (3) 일본 ... 49
 나. 국내 .. 52
 (1) 연도별 특허출원 건수 ... 52
 (2) 출원인별 특허출원 동향 .. 53

(6) 기타 주요 구성 부품 ... 17
3. 자동차 에어컨 연구개발 동향 .. 18
 가. 해외 동향 ... 18
 (1) 압축기 개발 동향 ... 18
 (2) 용축기 개발 동향 ... 23
 (3) 공급기 개발 동향 ... 25
 (4) 자동차 에어컨용 냉매 개발 동향 25
 (5) 42V Power System 관련 동향 .. 28
 (6) Multi-Zone 에어컨 개발 동향 .. 29
 (7) 부품 모듈화 기술 개발 동향 .. 29
 (8) Climate Control Seat 개발 동향 30
 (9) 유해 가스 차단 및 냉매 씀계 기술 개발 동향 31
 (10) 냉방 부하 감소 기술 개발 동향 ... 32
 나. 국내 동향 .. 32
 (1) 압축기 개발 동향 ... 33
 (2) 열교환기 개발 동향 .. 33
 (3) Multi-Zone 공조 개발 동향 ... 34
 (4) 기타 기술 개발 동향 .. 34
 다. 국내외 기술 비교 분석 ... 35
 라. 자동차 에어컨 기술의 전망 .. 36
제 4 장 시장동향 및 전망 ... 59

1. 산업 구조 분석 ... 59
 가. 산업의 개요 ... 59
 나. 산업의 특성 ... 61
 (1) 산업구조 및 특성 ... 61
 (2) 산업의 위치 .. 62

2. 산업환경 분석 ... 63
 가. 기회 요인 ... 63
 (1) 수입차 보유대수 증가 63
 (2) 해외 판매채 업체의 글로벌 아웃소싱 강화 64
 나. 위험 요인 ... 64

3. 국내외 시장 동향 분석 .. 65
 가. 세계 시장동향 ... 65
 (1) 세계 자동차 산업동향 65
 (2) 세계 자동차용 에어컨 시장동향 67
 (3) 세계 자동차용 에어컨의 시장전망 72
 나. 국내 시장동향 ... 74
 (1) 국내 자동차 산업동향 74
 (2) 국내 자동차용 에어컨 시장동향 76
 (3) 국내 자동차용 에어컨 시장 전망 81

제 5 장 결 론 ... 83

참고문헌 ... 85
표 목차

<표 2-1> 압축기 종류에 의한 에어컨 시스템 구성 .. 10
<표 2-2> 주요 압축기의 압축 방식과 특성 ... 13
<표 2-3> 주요 냉매별 특성 비교 ... 26
<표 3-1> 국가별 특허정보 조사 결과 .. 39
<표 3-2> 자동차용 에어컨 관련 IPC 분류별 기술후용 41
<표 4-1> 세계 자동차 판매전망 .. 65
<표 4-2> 국가별 자동차 생산 순위 .. 66
<표 4-3> 지역별 자동차용 에어컨 장착률 전망(1999~2005) 73
그림 목차

<그림 2-1> Packard에 의해 만들어진 최초의 자동차용 에어컨(1939년) 6
<그림 2-2> 중기 압축 사이클 구성도 ... 8
<그림 2-3> 자동차 에어컨 시스템의 구성 방식에 의한 분류 .. 9
<그림 2-4> 유통형 압축기의 종류 .. 12
<그림 2-5> 자동차 에어컨 TXV 종류 .. 16
<그림 2-6> 로터리 와 스크류 압축기의 토크 변동 ... 19
<그림 2-7> 지역풍향형 압축기 방식 ... 21
<그림 2-8> PF 방식과 세르플 방식의 컨텐서 .. 24
<그림 2-9> 미국 Visteen사의 CO2 System 구성 ... 28
<그림 2-10> FEM 구성 방법 ... 30
<그림 2-11> Climate Control Seat 구성도 .. 31
<그림 3-1> 국가별 특허정보 바탕 .. 39
<그림 3-2> 세계 특허의 연도별 출원 추이 .. 40
<그림 3-3> 연도별 특허출원 건수 ... 42
<그림 3-4> 특허출원인 현황 .. 44
<그림 3-5> 국제특허분류에 따른 등록건수 비율 .. 45
<그림 3-6> B60H의 세부 국제특허분류에 따른 등록건수 비율 ... 45
<그림 3-7> 연도별 특허출원 건수 .. 46
<그림 3-8> 특허출원인 현황 .. 47
<그림 3-9> 국제특허분류에 따른 출원건수 비율 .. 48
<그림 3-10> B60H의 세부 국제특허분류에 따른 출원건수 비율 ... 48
<그림 3-11> 연도별 특허출원 건수 .. 49
<그림 3-12> 특허출원인 현황 .. 50
<그림 3-13> 국제특허분류에 따른 출원건수 비율 .. 51
<그림 3-14> B60H의 세부 국제특허분류에 따른 출원건수 비율 ... 52
<그림 3-15> 연도별 특허출원 건수 .. 53
<그림 3-16> 특허출원인 현황 .. 54
<그림 3-17> 국제특허분류에 따른 출원건수 비율 .. 55
<그림 3-18> B60H의 세부 국제특허분류에 따른 출원건수 비율 ... 56
<그림 4-1> 자동차 산업의 구조 ... 60
<그림 4-2> 자동차용 에어컨의 PLC상의 위치 ... 62
<그림 4-3> 우리나라의 수용차 보유대수 전망 ... 63
<그림 4-4> 미국시장에서의 업체별 판매증가율(2003년 1~10월) .. 67
<그림 4-5> 자동차 부품의 중요성에 대한 소비자 조사결과 .. 68
<그림 4-6> 세계 자동차용 액어런의 업체별 시장점유율(2000년) 69
<그림 4-7> 유업의 자동차용 액어런 시장점유율(2000년) ... 70
<그림 4-8> 북미의 자동차용 액어런 시장점유율(2000년) ... 71
<그림 4-9> 일본의 자동차용 액어런 시장점유율(2000년) ... 72
<그림 4-10> 세계 자동차용 액어런 시장규모 예측 ... 74
<그림 4-11> 국내 자동차 판매동향 ... 75
<그림 4-12> 국내 자동차 판매금액 추이 ... 76
<그림 4-13> 국내 자동차용 액어런 생산대수 ... 77
<그림 4-14> 국내 수용차용 액어런의 생산금액 추이 ... 78
<그림 4-15> 자동차용 액어런의 목표시장별 비중 ... 79
<그림 4-16> 주요 자동차용 액어런 업체의 거래선 현황 ... 80
<그림 4-17> 자동차용 액어런의 국내시장 점유율(2002년) ... 81
<그림 4-18> 국내 자동차용 액어런의 국내 시장규모 전망 .. 82
제1장

서론

1. 연구의 개요 및 필요성

국내 자동차산업은 불과 30여 년의 짧은 제조역사에도 불구하고 세계의 유명 자동차 메이커들과 경쟁하고 있으며, 한국의 대표적 산업으로 자리잡아 왔다. 자동차용 에어컨의 역사 또한 자동차에 비해 상대적으로 짧아 20~30년 전까지만 하여도 사차품으로 여겨질 정도였으나 지금은 승용차는 물론 중장비 등 차종에 상관없이 거의 모든 차량에 장착되고 있다. 이것은 자동차의 판점이 단지 운송 또는 이 동 수단으로서 뿐만 아니라 운전자가 탑승자의 안전 및 편의성 향상으로 확대되고 있기 때문이다. 이러한 경향은 소비자의 생활 및 의 식수준의 향상에서 기인되며, 자동차 산업은 물론 전자, 통신, 건축 등 거의 모든 산업분야에서 요구되고 있는 추세이다.

따라서 자동차 산업도 동력성능 등 차량의 공학적 특성 이외에 탑승자의 관점에서 보다 적극적으로 승차감 및 실내의 온도 쾌적성에 대한 개발 비중을 늘여가고 있다. 선진국들은 이미 인간공학 측면에서 인간을 중심으로 한 연구가 활발히 진행되고 있으며, 우리의 자동차 산업도 그 범위를 넘어서 자동차란 기계 및 기능 중심이 아닌 운전자 및 탑승객의 만족도를 향상시킬 수 있는 방향으로 전환할 시기이다.
2 Vehicle Air-condition

또한 국내 자동차 에어컨에 대한 전문적이고 체계적인 연구개발이 미흡한 현실에서, 본 연구에서는 점점 자동차 산업에서 중요한 영역을 차지하고 있으며 관심이 증대되고 있는 자동차용 에어컨에 대한 개발 동향과 그 전망에 대해 살펴보고자 한다.

2. 연구의 목적

최근 산·학·연 등 각 분야에서 관심 있는 주요 산업에 대한 종합적이고 신뢰성 있는 분석정보의 수요가 증대하고 있으나, 실제 연구·분석기관들 통한 공급은 미미한 실정이다. 따라서, 한국과학기술정보연구원(KISTI)에서는 최근 시장성, 기술성과에서 향후 주목할 만한 산업으로 각광받고 있는 자동차용 에어컨을 분석대상으로 선정하고, 자동차용 에어컨에 대한 심도 있는 기술동향분석, 연구개발동향분석, 특허정보분석, 산업 및 시장분석을 수행하였다. 이를 통해 국가정책수립자에게는 국가연구개발 지원의 효율적 활용과 R&D의 성공기능성을 높일 수 있는 기초분석자료를 제공하고, 정보화 및 분석에 한계가 있는 기업 및 연구기관의 기획 및 전략개발자들에게는, 기업의 사업계획 또는 R&D계획 수립시 객관적이고, 충실한 정보를 제공하는데 연구의 목적을 두었다.

3. 연구의 방법

본 보고서에서 논의 대상이 되고 있는 자동차용 에어컨은 자동차 산업과 매우 밀접한 연관성을 맺고 있는 바, 세계 자동차 산업과 자
동차용 에어컨 시장, 국내 자동차 산업과 자동차용 에어컨 시장을 대상으로 심도 있는 조사 분석을 하였다.

제 2 장 기술동향분석에서는 한국과학기술정보연구원(KISTI)이 보유하고 있는 문헌과 최근 해외발표 저널, 전문가자문 등을 통해 자동차용 에어컨 기술 및 이와 관련된 R&D 전반과, 최근 이슈화되고 있는 문제들에 대해 체계적이고 종합적인 정보분석을 수행하였다.

제 3 장 특허정보분석에서는 자동차용 에어컨에 관해 조사된 특허 정보를 중심으로 특허분석을 실시하였다. 과거의 기술호를 추이와 최근의 기술동향, 출원인 분석을 통한 기술의 우위현황 및 기술의 주요 분포도 등을 도식화된 그래프를 이용하여 국가 및 기술분야별 등으로 세분화·체계화하여 다각적으로 분석함으로써 특허의 동향을 분석하였다. 자동차용 에어컨에 관한 특허정보분석에는 한국과학기술 정보연구원(http://www.kisti.re.kr)에서 제공하는 각국의 특허정보 데이터베이스를 활용하였다.

제 4 장 시장동향 및 전망에서는 자동차용 에어컨의 구조 및 환경과 국내외 시장동향을 조사·분석하였다. 그리고, 미국, 일본의 최근 분석보고서, 국내 조사전문기관의 발표자료, 업계 및 연구소의 Field Survey를 통해 향후 국내외 시장을 전망하였다.
제2장

기술동향 분석

본 장에서는 자동차 애어건의 발전 역사, 주요 특성 및 국내외 기술 동향에 대하여 조사하고, 자동차 애어건을 구성하는 주요 부품들의 기능과 기술수준을 분석하여 향후 자동차 애어건 기술동향을 전망해 보았다.

1. 기술의 개요

가. 자동차 애어건의 역사

자동차 애어건의 개념은 19세기말 William Whiteley에 의해 제시된 마차 밑에 없음이 담긴 검사를 설치하고 축에 부착된 펜을 이용하여 실내로 공기를 불어넣는 방법에서부터 출발하였다고 할 수 있으나 20세기 초기까지 자동차의 유일한 방방을 위한 방법은 종종장치에 의한 것이었다.

1908년에 closed-body 자동차가 나오면서부터 자동차 애어건의 필요성이 실질적으로 대두되었고, 1925년을 기점으로 open-body 모델의 생산량을 초과하게 되므로 1930년대에 자동차 애어건에 대한 연
구가 진행되어 기계적인 냉동 시스템을 갖춘 최초의 자동차가 1939년 Packard에서 만들어졌으며, GM에서도 1939년 Cadillac에 트렁크 설치형 제품을 출시하게 되었다.

<그림 2-1> Packard에 의해 만들어진 최초의 자동차용 에어컨(1939년)

1940년대 초반부터 자동차 에어컨이 보급되기 시작하였으나 가격이 비싸고 운전상의 문제점이 많아 장착율이 극히 저조하였으나, 1950년대에 $600 수준의 실용적인 에어컨 시스템이 등장하였으며 1960년대 미국 내에 소형차 보급의 증가와 함께 수요가 늘어나기 시작하였다.

나. 자동차 에어컨의 목적

자동차 에어컨의 목적은 공기조화(Air Conditioning)의 4대 요소인 공기의 온도, 습도, 기류 및 정의도를 적절히 조화시켜 외부 열부하로부터 차량의 실내온도를 실외보다 낮게 유지시키며 실내 환경을 가장 최적의 상태로 유지시키는 것이다. 여기서 열부하란 차량 내부 및 외부 열의 형태로, 태양으로부터의 복사열, 차체 부근에서의 전도 및 대류에 의한 열, 탑승객 및 전지 장치로부터의 발열, 지열 및 차체 통풍성을 의한 자연 환기 등에 의한 열들을 통틀어 말한다.

다. 자동차 에어컨의 구성

자동차 에어컨 시스템은 증기압축 냉동사이클을 이용하며 냉매의 증발압도로서 실내 공기의 온도 및 습도를 낮추어 준다. 자동차 에어컨 시스템의 주요 구성부품 및 증기압축 냉동사이클은 저온 저압의 냉매를 고온 고압 상태로 증발시키는 증발기(Compressor), 고온 고압의 가스를 외기와 열교환 냉각시켜 액체 상태로 변환시키는 냉각기(Condenser), 교환작용을 이용하여 온도와 압력을 강화시키는 확장밸브(Expansion Valve) 또는 오리피스 튜브(Orifice Tube)와 저온 저압의 냉매를 증발시키는 증발기(Evaporator)로 구성되며, 냉매의 증발압도를 이용하여 종류가에서 실내로 유입되는 공기의 열을 흡수하여 냉방작용을 하게된다.
2. 자동차 에어컨의 주요 구성품 및 특성

가. 자동차 에어컨 시스템

자동차 에어컨 시스템을 분류하는 방법은 여러 가지가 있을 수 있으나 다음과 같이 구성 방식과 제어 방식에 따라 분류해 보았다.

(1) 구성 방식에 의한 분류

자동차 에어컨 시스템은 구성 방식에 따라 크게 두가지로 분류할 수 있는데, 평창밸브를 사용하는 TXV(Thermal Expansion Valve Type) 방식과 오리피스 튜브를 사용하는 CCOT(Cycling Clutch Orifice Tube) 방식으로 나머지 평창방식에 의한 분류방법이다.\(^1\)
<그림 2-3> 자동차 에어컨 시스템의 구성 방식에 의한 분류

(a) TVX A/C System 구성

(b) CCOT A/C System 구성

TXV 방식에서는 폐장밸브와 응축기 사이에 리시버드라이어(Receiver Drier)를 두어 액상의 냉매가 폐장밸브로 유입되도록 구성하며, CCOT 방식에서는 증발기 출구의 과열도 조절이 불가능하기 때문에 증발기와 압축기 사이에 어큐큘레이터(Accumulator)를 두어 압축기로의 액냉매 유입을 방지한다.

저동차 에어컨 시스템 구성 방식 중에서 냉매의 폐장과 증발을 폐장밸브로 조절하는 TXV 방식은 비용은 다소 비싸지만 냉매유량을

1) Tom Birch, 'Automotive Heating And Air Conditioning', 1995
정확히 조절할 수 있으므로 저속이나 비정숙 운전 조건에 적합하고, 냉매의 평창기구로서 직경과 길이가 다른 오리피스 튜브를 사용하는 CCOT 방식은 가격은 다소 저렴하나 고속 주행과 같은 정숙 운전조
건에서 성능이 우수하다. 또한 압축기의 종류에 따라 압축기의 토출
용량이 고정된 고정용량 압축기와 토출용량이 조절 가능한 가변용량
압축기로 에어컨 시스템을 구성할 수 있는데, 이처럼 냉매의 평창
방식과 압축기의 종류에 따라 다음의 에어컨 시스템 구성 방법으로
세분화할 수도 있다.

<표 2-1> 압축기 종류에 의한 에어컨 시스템 구성

<table>
<thead>
<tr>
<th>TXV Type</th>
<th>- CCTV Type (Cycling Clutch Thermal Expansion Valve)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- VDTXV Type (Variable Displacement Thermal Expansion valve)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCOT Type</th>
<th>- CCOT Type (Cycling Clutch Orifice Tube)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- VDOT Type (Variable Displacement Orifice Tube)</td>
</tr>
</tbody>
</table>

(2) 제어 방식에 따른 분류

자동차 에어컨 시스템은 에어컨 작동방식을 제어하는 방법에 따라
수동식(Manual Type)과 자동식(Automatic Type)으로 구분할 수 있
다. 수동식은 레버와 도어 캡 사이를 케이블로 연결하여 레버의 위
치에 따라 각 공기 토출 제어 도어를 작동시키는 수동 레버형
(Manual Lever Type)과 진공 엑추에이터를 이용하여 제어하는 로터
리식 수동방식인 전공 레버형(Vacuum Lever Type)이 있다.

나. 자동차 에어컨의 주요 구성품과 특성

자동차 에어컨 시스템을 구성하는 주요 구성품으로는 압축기, 융축기, 증발기와 팽창기구가 있으며, 기타 구성품으로는 수액기라고도 불리우는 리시버드라이어 또는 액시클레이터와 안전 장치로서 고압 발생을 감지하는 압력 스위치와 이상 고압으로부터 압축기를 보호하는 압력 안전 밸브(Pressure Relief Valve) 등이 있다.

(1) 압축기

자동차 에어컨용 압축기는 에어컨 시스템을 구성하는 핵심부품으로서 자동차 엔진으로부터 동력을 전달받아 회전하면서 증발기의 저온 저압의 냉매를 고온 고압으로 압축하여 융축기로 보내는 역할을 수행한다. 압축기의 회전수는 엔진의 회전수에 의해 결정되며 자동차 운전 조건이 불규칙하고 차체로부터의 진동을 직접적으로 전달받게 되므로 높은 내구력과 신뢰성 및 고효율이 요구된다.

압축기는 압축을 하는 방식에 따라 용적형(Positive Displacement
Compressor)과 비용적형 압축기로 나눌 수 있는데, 용적형 압축기는 압축실의 체적을 감소시킴에 따라 냉매의 압력을 증가시키는 방식이고, 비용적형 압축기는 냉매 가스의 운동에너지를 압력으로 변환시켜 압축하는 방식이다. 자동차 에어컨에 사용되는 압축기는 대부분 용적형 압축기가 사용되며 다음과 같은 종류가 있다.

- [그림 24] 용적형 압축기의 종류
 - 용적형 압축기
 - 사판식(Swash Plate Type)
 - 움블 플레이트식(Wobble Plate Type)

사판식 압축기는 구동축(Shaft)에 사판(Swash Plate)을 설치하여 구동축을 회전시킴으로써 사판의 회전력을 피스톤의 움직임으로 변환시켜 냉매 가스의 흡입 및 토출을 수행하며, 움블 플레이트 방식은 사판식 압축기와 유사하나 구동축의 회전력이 사판이 아닌 로터 축 회전에 의해 피스톤의 움직임이 전달되고 회전으로만 압축이 일어난다. 로터식 압축기는 구동축에 조립된 로터에 베인이 조립되어 구동축의 회전함으로써 베인이 원심력에 의해 튀어나와서 로터와 타원의 실린더를 둘러싸인 용적을 변화시켜서 흡입과 압축을 수행하며, 스크롤 압축기는 고정 스크롤(Fixed Scroll)과 회전스croll (Orbiting Scroll)로 구성되어 구동축의 회전운동에 따라 회전 스크롤이 선화하면서 두 스크롤 사이에 생기는 공간의 용적을 변화시켜 흡입과 압축을 하게 된다.
제 2 장 기술동향 분석
<table>
<thead>
<tr>
<th>Type</th>
<th>작동 방법</th>
<th>주요 특징</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swash plate</td>
<td>- 시관의 회전력에 따른 피스톤 향폭 운동
- 내구성 좋음
- 구조 복잡, 중량 무거움</td>
<td></td>
</tr>
<tr>
<td>Wobble Plate</td>
<td>- 로터축 회전에 의한 피스톤 향폭 운동
- 풍선수가 작용
- 시관식 대비 토크 변동 높</td>
<td></td>
</tr>
<tr>
<td>Rotary</td>
<td>- 회전하는 매인의 관성력에 의한 압축
- 진동이 적음
- 풍선수 적고 소형, 경량</td>
<td></td>
</tr>
<tr>
<td>Scroll</td>
<td>- 2개의 Scroll 회전운동에 의한 압축
- 풍선수 적고 소형, 경량
- 고속 회전시 효율 우수</td>
<td></td>
</tr>
</tbody>
</table>

압축기는 토출용량의 제어 방식에 따라 고정 용량식과 가변 용량식으로 나누어진다.

고정용량 압축기는 에어컨 부하의 변화에 관계없이 최대 토출량으로 작동하는 방식이고 가변용량 압축기는 1회전당 냉매 토출용량을 에어컨의 부하 상태에 따라 연속적으로 변화시켜 운전성을 향상시키는 방식이다.

가변용량 압축기의 경우 바이패스(Bypass) 방식과 스트로크(Stroke) 방식이 있는데, 바이패스 가변용량 방식은 회전식 압축기에,
스트로크 가변용량 방식은 왕복동식 압축기에 응용되고 있다.

(2) 압축기

압축기는 압축기에서 압축된 고온 고압의 냉매 가스를 외부 공기와 열교환을 통해 액체 상태의 냉매로 변환시키는 기능을 수행하며 크게 라 펑 앤드 튜브 방식(Fin & Tube Type), 서렌틴 방식(Serpentine Type)과 PF 방식(Parallel Flow Type)으로 분류할 수 있다.

痹 앤드 튜브 방식은 원형의 튜브에 평평한 필로 구성되며 필 내에 원형 튜브가 거위질수 있도록 적당한 크기의 구멍을 갖고 있다.
서렌틴 방식은 여러 개의 내부 유동 통로를 갖는 타원형의 튜브와 루버 필(Louvered Fin)으로 구성되며 서렌틴 형상으로 구부러진 연속 압축 알루미늄 튜브와 그 사이에 루버 필이 결합되어 전열 면적을 높여 준다.
PF 방식은 한 쌍의 헤더 파이프(Header Pipe) 사이로 평평한 알루미늄 압축 튜브와 코র랙트 필(Corrugate Fin)이 차례로 적층되어 있는 구조이다.

(3) 증발기

증발기는 냉장과정을 거쳐 유입되는 습도화 증기 상태의 저온 저압 냉매를 차실내 또는 실외의 공기와 열교환시켜 파열증기 상태로 변화시킨다. 증발기는 압축기와 함께 에어컨 시스템의 대표적인 열교환기로서 라 펑 앤드 튜브 방식, 서렌틴 방식과 라미네이트 방식으로 분류할 수 있다.
편 앤드 튜브 방식은 움직기의 구성방식과 유사하며 라미네이트 방식은 알루미늄 판을 직층하고 그 사이에 펴아 삽입한 적층형 방식으로 상하로 탱크(Tank)를 갖추고 유턴(U-Turn) 형식의 냉매 유동을 갖는 Two Tank 방식과 상단부에 1개의 탱크를 갖는 Single Tank 방식이 있다.

라미네이트 방식은 드론컵(Drawn Cup) 방식이라고도 불리며, Two Tank 방식에서는 상하로 탱크를 갖게 되므로 Effective Space가 줄어들게 되므로 Single Tank 방식이 상대적으로 Effective Space를 향상시킬 수 있으므로 방열량을 더 증대시킬 수 있다.

(4) 평창 벨브

평창벨브는 증발기 입구에 설치되며 리시버 드라이어로부터 유입된 고온 고압의 액방매를 교착작용을 통하여 저온 저압의 습포화 증기 상태로 변화시키는 기능을 한다.

평창벨브의 주요 기능은 교착 작동과 유량조절 기능이다.

교착작용이란 액방매를 교착효과를 이용하여 저온 저압의 습포화 증기 상태로 변화시키는 기능으로 이론적으로 단열과정이며, 연달의 변화는 없다.

유량조절 기능이란 외부 및 내부환경과 압축기 회전수 등에 따라 변화하는 냉동 사이클의 일부에 대응하여 최대의 냉방 성능을 발휘할 수 있도록 냉매 유동량을 조절하는 기능으로 증발기 출력측의 압력, 평창벨브 입구측의 압력과 이미 설정된 벨브의 스프링 압력을 상호 조화시켜 유료의 단면적을 변화시켜서 조절한다.
<그림 2-5> 자동차 에어컨용 TXV 종류

(a) Angle Type (b) Block Type

팽창밸브는 앵글형(Angle Type)과 블록형(Block Type)이 있으며 앵글형은 다시 균압관의 위치에 따라 경승용차에 적합한 내부 균압
식(Internal Equalization Type)과 일반 승용차용 냉동 시스템에 널리
쓰이는 외부 균압식(External Equalization Type)이 있다.

팽창밸브는 본체, 다이아프램(Diaphragm), 볼 밸브(Ball Valve),스
프링, 감온통, 균압관 등으로 구성되고, 증발기 출구의 냉매 온도를
감지하여 압력으로 변환하여 다이아프램 상부에 전달하며 균압관은
냉매의 압력을 감지하여 다이아프램 하단으로 전달, 이들 힘과 스프
링 힘의 평형 관계에 의해 냉매 유로의 개도를 조절한다.

(5) 오리피스 튜브

오리피스 튜브의 기능은 기본적으로 팽창 밸브의 기능과 동일하
나 냉매 유량 조절의 기능은 없다. 주요 구성 부품으로서 오리피스 관,
스크린, 오링(O-Ring), 가이드 리브(Guide Rib)가 있다.
Vehicle Air-condition

오리퍼스 관에서 교출력이 일어나며, 각 차종별 냉동 시스템에 적합한 구경을 선정하여 사용하게 되는데, 승용차용으로는 1.2~1.5 mm 구경의 제품이 사용된다. 오리퍼스 관은 주로 동관이 사용되고 이물질을 여과시키는 스크린으로 보호된다.

(6) 기타 주요 구성 부품

자동차 에어컨의 기타 주요 구성품으로는 증발기의 동결을 방지하기 위한 셰모스테트(Thermostat), 셰미스터(Thermester), 시스템의 고압을 감지하여 압축기의 구동을 제어하는 압력 스위치(Pressure Switch)와 압축기를 이상고압에서 보호하는 기능인 압력 안전 밸브(Pressure Relief Valve) 등이 있다.

셰모스테트의 기능은 증발기의 판 사이에 감온동을 삽입, 설치하여 감온동 내에 봉입되어 있는 봉입 유체의 변화에 따라 밸로우즈 내의 압력과 스프링 힘의 평형관계에 의해 자동 접점을 개폐시키며 압축기의 클리시 전원을 On/Off 제어한다.

셰미스터는 증발기의 휘류측 표면에 주로 이격 설치하여 증발기 출구에서의 공기 온도를 측정하게 되며, 역시 설정치 이하의 온도가 되면 증발기를 보호하기 위해 압축기의 클리시 전원을 On/Off 제어한다.

압력 스위치는 에어컨 시스템의 고압측 라인에 설치되어 시스템에 이상 고압이 발생하는 경우에 고압측 압력을 감지하여 설정 압력 이상인 경우 압축기의 클리시 전원을 On/Off 제어한다.

압력 안전 밸브는 압축기의 도출측에 부착되어 압축기에 순간적인
이상고압이 발생하는 경우에 압축기의 고착을 방지하기 위해 압력 밸브를 개방하여 냉매를 외기로 배출하며, 다시 설정 압력 이하가 되면 밸브를 차단하여 추가적인 냉매 방출을 방지하는 기능을 수행 한다.

3. 자동차 에어컨 연구개발 동향

가. 해외 동향

(1) 압축기 개발 동향

① 고정용량형 압축기

현재 대표적인 자동차 에어컨용 압축기로서는 왕복동식 압축기의 일종인 사판식 압축기가 주류를 이루고 있다.

사판식 압축기는 간극체적 및 흡입 밸브와 토출밸브를 가지고 있으므로 고속 운전시에 체적효율을 급격히 감소시키는 요인이 되며, 피스톤의 왕복 운동에 의한 불평형 절량으로 판성력이 주기적으로 작용하여 진동 및 압력 변동이 생겨 소음원이 되기도 한다.

따라서 이러한 불평형 절량에 의한 진동을 감소시키기 위한 로터리 압축기의 고안되었는데, 로터리 압축기는 편심된 절량이 회전하면서 이루어진 공간을 축소시켜 압축을 수행하기 때문에 편심 절량 반대편에 보정 절량(Balance Weight)을 두어 편심 절량에 의한 불평형 진동을 억제할 수 있었다.
로터리 압축기는 형상에 기인한 불균형력을 제거함으로써 진동을 감소시켰으나, 압축되는 기체의 토크 변동에 기인한 진동이 발생하므로 이러한 토크 변동을 감소시키기 위해 고안된 것이 스크롤 압축기이다.

스croll 압축기는 간극 채적 및 흡입 볼브가 없어 고속 운전시에도 채적 효율이 좋으며, 회전수 변환에 따른 용량 제어가 용이하고 동 토크가 적다는 장점이 있다.

스croll 압축기의 개념은 프랑스 Leon Creux에 의해 개발되어 1905년 미국에서 특허를 획득하였으나 가공 기술 및 가스 누설 방지 기술의 적용이 가능했던 1981년에야 일본의 Sanden에서 최초의 자동차 에어컨용 냉매 압축기로서 개발되었다.

이상과 같이 고정 용량형 압축기 개발 과정은 불량형 관성력과 토크 변동에 의한 진동을 감소시키고 간극 채적 및 누설 방지에 의한
에너지 효율을 증가시키는 추세로 발전해 왔다.

사판식 압축기는 개발된 이래로 아직도 꾸준히 부품 개선에 의한 효율성이 이루어지고 있으며 상대적으로 낮은 효율에도 불구하고 높은 내구 신뢰성과 가격 경쟁력으로 여전히 높은 적용율을 나타내고 있다.

스크롤 압축기의 경우에는 자동차 예어저장 압축기 중에서 가장 효율이 우수하며 압축기구의 기계적 마찰이 적어 고속 운전이 가능하다는 장점에도 불구하고, 제작이 까다롭고 스크롤 특성상 고압 운전에 취약한 단점을 가지고 있다.

이상과 같이 고정용량형 압축기의 경우에는 가변용량형 압축기의 등장으로 서서히 자리를 내주고는 있으나 오랜 기간동안의 사용 경험이 기술 축적 등의 장점으로 지속적인 개선 노력과 함께 앞으로도 상당기간 현재의 자리를 고수할 전망이다.

② 가변용량형 압축기

자동차 예어저장 압축기는 자동차 개발 동향과 유사하게 고효율화, 저환영양성 및 고내구성을 지향하는 방향으로 진행중이며, 압축 방식은 기존의 고정형을 따르더라도 제어 방식을 가변형으로 추가하여 압축기의 토출용량을 제어하고 열교환기의 과열 및 과냉을 방지하여 예어저장 조건을 최적화 함으로써 차량의 운전성 및 연비향상을 도모하고 있다.

가변용량형 압축기는 위블 플레이트, 베인 로터리, 사판식 및 스크롤 압축기 방식에서 모두 연구되고 있다.

압축기 용량 제어 방식으로서 바이 패스 방식은 회전식 압축방식인 베인 또는 스크롤 압축기에 적용되고 있으며, 압축 작동실에 바
이 패스 구멍을 스플(Spool)의 이동에 의해 개폐하도록 하여 압축기 시시의 용량을 연속 또는 단계적으로 변화시키는 방식이다.

<그림 2-7> 기변용량형 압축기 방식

(a) By pass 방식의 기변용량 압축기

(b) Stroke 제어 기변용량 압축기

이 방식은 바이 패스 구멍의 위치와 크기에 따라 제어 용량이 결정되므로 0~100% 용량 제어가 허들며, 고속 회전시에는 바이 패스 유량의 한계가 있게 되는 특징이 있다.

이밖에 기통수 가변 방식으로 전, 후방 10기통 사관식 압축기의 경우 통상 10기통 토출을 하다가 냉방 부하가 작을 경우 전자밸브를 이용하여 후방의 5기통에서 토출 밸브를 닫아 외부회로로 토출되지
못하도록 하여 전방 압축실에서만 토출되는 50% 용량제어 방법도 있으나 기계적 효율면에서 비효율적이다.

스트로크 제어 가변용량 방식은 왕복식 사관형, 위블록 압축기에 있어서 피스톤의 스트로크를 제어함으로써 압축 행정 용량을 변화시키는 방법이다. 바이 패스 방식에 비해 냉방부하에 따른 연속적 제어가 가능하고 기계일도 저하가 되므로 효율면에서 우수한 방법이다.

그러나 위블록 사관형 및 스위블형이 있는데, 위블록 및 사관형의 경우에는 각각의 고정용량 방식과 작동 구조는 같으나 제어밸브 (Control Valve)를 두어 연속적으로 요양을 제어하는 것이 다르며, 스위블형의 경우에는 가변용량 압축기에서 연구되는 방식으로 위블록과 사관형의 특징을 모두 가지는 것으로 압축을 편차적으로 하는 것은 위블록의 가변기구와 유사하고 피스톤 구동 방법은 고정형 사관식과 유사하게 사판, 피스톤 및 슈로 구성되어 있다.

실제 가변용량의 제어는 압력제어밸브에 의해 이루어지는데 압축기의 흡입실 압력(Ps), 토출실의 압력(Pd) 및 크랭크실의 압력(Pc)을 감지하여, 중발기의 부하가 상승하는 경우에는 제어밸브를 차단하여 크랭크실의 압력을 하강시켜 사관의 경사각을 증가시켜 토출용량을 증가시키고, 방방부하가 감소한 경우에는 제어밸브를 개방하여 크랭크실의 압력을 상승시켜 사관의 경사각을 감소시켜 토출용량을 감소시키므로 소비동력을 절감시킬 수 있다.

이러한 가변용량형 압축기는 에어진 부하 변화 동작하여 압축기의 토출량을 변화시켜므로 운전성을 향상시키고 엔진의 부하를 감소시켜 연비 향상과 배기가스 저감에 공헌하고 있다.

가변용량형 압축기의 등장은 기존의 고정용량형 압축기의 제어 방
식인 클러치의 On/Off 제어와는 달리 이론적으로 도출용량이 0~100% 제어가 가능함으로 On/Off 제어에 필요한 클러치가 없는 클러치리스 압축기(Clutchless Compresor)까지 등장하게 되어 압축기의 제어 개념을 달리하였다. 이러한 클러치리스 압축기 기술은 일본의 Denso에서 개발되어 최근 Benz와 Toyota의 고급차종 일부에 적용되고 있다.

다음으로는 친환경 자동차 기술로서 각 차량 제조회사에서 개발중인 전기 자동차, 연료전지 자동차 및 하이브리드 자동차에 있어서, 차량의 구동원이 엔진이 아닌 전기이다 기존의 개방형 압축기와 같은 방식인 압축기를 엔진의 크랭크 푸리와 벨트로 연결시켜서 작동하는 구동방식이 불가능하므로 벨트 구동이 아닌 전기 모터에 의한 구동방식인 전동 압축기의 개발이 진행되고 있으며, Toyota의 2004년형 New Prius 차종에 사용화된 최초의 전동 압축기가 장착되어 시판될 예정이다. 2)

(2) 응축기 개발 동향

응축기의 개발 목표는 궁극적으로 소형화, 경량화 및 효율화라고 할 수 있다. 1990년대 초반까지 응축기는 서편된 방식이었으나, 사용량이가 R-12에서 R-134a로 바뀌면서 PF 방식으로 개선되었다. PF 방식은 기존 서편된 방식에 비해 방열 성능이 향상되었고 동기 저항율은 감소하면서 중량도 약 30% 정도 저감되었다.

이후 1990년대 중반에 Denso에서 서브쿨 응축기(Sub-cooled

2) 자료: 2003년 독일 Frankfrut Motor Show
Condenser를 개발하면서 현재는 PF 방식에서 서서히 서브를 응축기로 전환하는 추세이다.

![<그림 2-8> PF 방식과 서브 방식의 컨덴서](image)

(a) PF Type Condenser

(b) Sub-Cooled Type Condenser

기존의 자동차 에어컨 시스템에서는 응축기와 잉여 냉매 저장 및 액상 냉매만을 증발기로 선별 공급하기 위한 수액기(Receiver Drier)가 분리되어 구성되었으나, 서브쿨 응축기는 수액기능을 응축기에 포함시켜 응축된 냉매를 효율적으로 활용할 수 있으며, 수액기 일체형 응축기(IRDS; Integrated Receiver Drier Sub-cooled Condenser)라고도 불린다.

서브쿨 응축기는 에어컨 시스템에 충진되는 냉매의 양을 약
15~20% 정도 감소시킬 수 있으며, 냉매의 고압 발생을 감소시켜 엔진의 부하감소를 도모하고 부품의 통합화로 단순화를 실현할 수 있다. 3)

(3) 증발기 개발 동향

증발기 역시 자동차 에어컨을 구성하는 주요 열교환기의 하나로서 개발 목표는 응축기와 유사하다고 말할 수 있다. 증발기는 냉매와 공기의 열교환에 의해 직접적으로 냉방성능에 영향을 주게 되므로 내부 냉매 유동의 저항 요소를 억제하고 최대한 전열면적을 증가시키면서 동시에 소형화와 경량화가 요구된다.

증발기의 개발 동향은 현재는 라미네이트 방식으로 Single Tank방식이 대부분 적용되고 있으며, 경량화와 고효율화를 위하여 증발기 껍과 두께를 감소시키면서 튜브와 편의 미세화로 전열 성능을 향상시키고 코어(Core)부와 밸크부의 분리를 통해 압력 손실을 저감시키고 성능화를 도모하고 있다. Denso의 경우 2000년 사양과 대비하여 소형화 및 박폭화의 목표치를 35%로 감소하는 개발을 진행하여 기존의 58mm 두께의 증발기를 38mm 두께의 증발기로 개발 완료했음로 보고하기도 하였다.

(4) 자동차 에어컨용 냉매 개발 동향

자동차 에어컨에 사용되던 냉매는 프레온으로서 1930년에 드루포

3) 자료 : Development of Sub-Cool System, SAE 970110
제 2 장 기술동향 분석

에서 개발되었으며, 그 중에서 CFC-12(R-12)는 불연성, 재조의 용이 함과 고무 등의 Seal제를 열화시키지 않는 등의 장점으로 자동차 에어컨용 냉매로 널리 사용되었다.

그러나 1987년 오존층 보호를 목적으로 한 '몬트리올 의정서'가 채택되고 CFC-12 등의 특정 프레온이 오존층을 파괴하는 것으로 지적되면서 선진국들은 CFCs를 1996년부터, Halons은 1994년부터 필수용도 및 개도국의 기본적인 수요 충족을 위한 생산을 제외한 생산 및 소비를 전면 금지하기에 이르렀으며, 대체 냉매인 HFC-134a (R-134a)가 등장하게 되었다.

<table>
<thead>
<tr>
<th>Refrigerants</th>
<th>CFC-12</th>
<th>HFC-134a</th>
<th>NH₃</th>
<th>CO₂</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Substance</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ODP</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GWP (100 years)</td>
<td>7100</td>
<td>1300</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Flammable or Explosive</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

주) ODP : Ozone Depletion Potential, 오존피괴지수

하지만 HFC-134a도 오존층 파괴에 대한 영향이 작기는 하지만, 1997년 12월 교도에서 개최된 지구온난화방지협의(COP3)에서 온실가스의 규제가 논의되어 온난화에 미치는 영향 즉, 온난화 계수가 큰 HFC-134a 역시 규제 대상으로 지정되었다.

따라서 기존의 냉매를 이용한 혼합냉매나 지구온난화계수가 작은 이산화탄소 및 탄화수소 등의 자연냉매에 대한 연구가 활발히 진행되었다.
Vehicle Air-condition

고도 있고. 이러한 환경 보호와 지구온난화 방지에 대한 관심으로 사용 냉매의 온실가스계수(GWP; Global Warming Potential)와 전등 가온난화계수(TEWI; Total Equivalent Warming Impact)에 대한 논의도 활발히 진행되고 있다.

현재는 온실가스계수만으로는 실제 자동차의 환경영향을 충분히 표현할 수 없으므로 전등가온난화계수라는 TEWI로서 냉매 방출에 의한 직접효과와 에어컨 작동에 의한 간접효과를 나타낸다.

즉 TEWI는 제품의 일생 중에 방출하는 CO2의 방출량을 말하며, 자동차 에어컨의 사용냉매 방출에 의한 CO2 환산방출량과 에어컨 구동에 따른 엔진 연료소비량 증가에 의한 CO2 방출량을 더하여 구해지게 된다. 즉 TEWI 지수를 낮추는 방법으로 냉매의 개선과 함께 에어컨 동력 저감의 노력도 필요하게 되었다.

환경친화적인 냉매로서는 주로 탄화수소(HC), 암모니아와 이산화 탄소가 검토되고 있는데, 탄화수소 냉매는 저압측의 압력이 높고 가스밀도가 낮아 압축비가 작으므로 동일 냉매 능력시에 열교환기에 의한 압력손실이 작아 설계에서는 기존 HFC-134a 냉매에 비해 성능향상을 기대할 수 있다.

그러나 HC는 가연성 물질이므로 이에 대한 대책과 화재 위험성을 최소화하기 위한 냉매 충전량의 삭감이 요구되며 암모니아의 경우에도 독성을 갖고 있으므로 밀폐성이 있는 차량용 에어컨에 적용하기에는 문제가 있다.

따라서 현재 가장 활발히 연구되는 자연냉매로는 이산화탄소가 유력하나, 냉동 사이클의 구성상 기존 냉매에 비해 고압측 압력이 약 7배정도 높기 때문에 구성 부품들의 내압 설계가 중요하며, 이론적 성적 계수도 떨어지는 단점이 있다.
현재 선진국에서는 국제적으로 기수변화협약 의무이행체제가 구체화될 전망이므로 미국의 Delphi, Visteon, 일본의 Denso, Calsonic, Zexel, 독일의 Behr, 프랑스의 Valeo 등과 같은 전문 부품업체에서 선진 자동차 업체와 중심이 되어 이산화탄소용 자동차 에어컨 시스템의 연구개발이 진행중이며, 일부는 Proto 개발을 완료한 벤치 시험과 실차 탑재 성능 시험을 추진 중에 있다고 알려져 있다.

또한 Toyota 자동차는 2002년 12월에 연료전지차인 ‘FCHV’를 발표하면서 Denso에서 개발한 CO2 냉매용 에어컨을 탑재하였다고 발표한 바 있다.

(5) 42V Power System 관련 동향

자동차용 전원 전압은 약 50년 전에 6V에서 12V로 바뀌었다. 6V 시대에는 주로 조명과 절화장치에 전기부하가 사용되었고, 12V로 바뀌어서는 엔진제어, 에어컨, 오디오, 네비게이터 등의 다양한 전기기기들을 사용하게 되었다.
Vehicle Air-condition

하지만 안전, 편의성 측면에서 추가적인 전기적 제어 기기들이 등장하면서 보다 많은 전력이 필요하게 되었고, 인체에 대한 안정성을 고려하여 12V의 3배인 36V, 즉 시스템 작동 전압 14V의 3배인 42V를 체계하게 되었으며, 미국의 MIT가 주도적으로 산학공동 컨소시엄을 구성하여 선도하고 있다.

차량의 42V 시스템으로의 전환에 대비하여 전동식 압축기뿐만 아니라 에어컨 시스템의 제어 방식 및 사용 전압에서의 변화가 기대된다.

(6) Multi-Zone 에어컨 개발 동향

최근 자동차의 운전자 및 탑승객의 편의성에 대한 요구 수준이 높아지면서 Multi-Zone 에어컨 기술의 요구가 두드러지고 있다.

Multi-Zone 에어컨 기술은 운전석과 조수석의 온도 및 풍향을 각각 조절할 수 있는 2-Zone 공조로부터 시작되었다. 이어 2-Zone에 좀 더 많은 센서와 액추에이터를 가진 3-Zone Unit이 등장하였으며, 최근에는 4명의 탑승자가 각각 센서에 의해 온도를 조절할 수 있는 4-Zone 에어컨 공조 시스템도 등장하여, Benz 등 유럽의 고급차종 일부에 적용중이다.

(7) 부품 모듈화 기술 개발 동향

자동차 산업에 있어서 모듈화는 비용 절감과 부품수 절감의 양대 효과로 점차 증가되는 추세이며, 에어컨 부품에 있어서는 라디에이터, 쿨링팬, 컨덴서, 인터쿨러 등을 일체화시킨 FEM(Front End

Information Analysis
Module)의 대표적이다.

![그림 2-10] FEM 구성 방법

Denso에서는 2000년에 Cooling Module 생산을 개시하였으며, 기존의 부품 구성에 비해 약 30% 정도의 경량화를 달성하였다고 보고 하였다.

(8) Climate Control Seat 개발 동향

2000년대 이후 고급차를 중심으로 Climate Control Seat 기술을 적용하는 차종이 증가하고 있다.

Climate Control Seat은 1995년 캐나다의 AMERICON사가 세계 최초로 개발한 것으로, 시트 큐션 및 시트 등반에에서 온풍 또는 냉풍을 토출하여 운전자의 편의성을 높이는 것이다. 기존의 공기 토출구에서 나오는 토출량과 관계없이 Thermo-Electric Device를 채용하여 각 좌석의 독립 에어컨 조절 성능을 향상시켰으며, 세계적으로 약 14
중의 양산 차종에 적용중이다.

<그림 2-11 > Climate Control Seat 구성도

최근에는 Nissan의 Cima, GM의 2004년 Cadillac에 기본 사양으로 채택되었다. 2-3년 내에 국내 자동차 시장에도 Climate Control Seat 이 등장하리라 예상된다.

(9) 유해 가스 차단 및 변세 제거 기술 개발 동향

자동차 제작시 사용되는 내장재와 접착제로부터 발생하는 이론바 ‘새차 냄새’와 함께 도심지 통과시에 외부로부터 유입되는 오염된 공기에서 기인되어 차량의 실내가 투톤곱팡이 등의 미생물과 배기 가스 등으로 오염되고 있음이 국내외 언론에서 최근 보도된 바 있다.

따라서 미세한 먼지 및 냄새 제거를 위하여 Odor/Particle Filter가 개발되었다.

그러나 필터의 교환 주기를 연장시켜야 하는 기술과 필터의 포집 성능의 향상은 압력 손실과 비례하므로 여전히 해결해야 할 문제점으로 남아 있다.
한편 오염된 외부 공기가 실내로 유입되는 것을 사전에 감지하여 차단하는 기술인 유해가스 차단센서(Air Quality Sensor)가 개발되어 적용되고 있다. 하지만 다양한 유해 가스를 판단하고 감지하는 기술에 있어서는 아직도 개발 중이다.

(10) 냉방 부하 감소 기술 개발 동향

자동차의 일부는 에어컨 시스템의 소모 동력과 직접적으로 관계가 있으므로 에어컨 시스템의 동력 소모를 절감하기 위해서는 각 부품의 효율성을과 중량감소 외에도 자동차의 단열성 향상을 통한 냉방 부하 감소 기술이 주목받고 있다.

미국 Visteon사에서 경량 소재의 사용과 특수 코팅 처리된 폴리카보네이트 단열 유리창 및 단열성이 우수한 차체 내장재 적용 등으로 CAE 기술을 이용하여 최적화시킨 EEV(Energy Efficient Vehicle) 기술은 냉방 부하를 약 60~80% 정도 감소시킬 수 있으리라 예측되고 있다.

이러한 기술은 부품의 경량화에 따른 연비 향상, 자외선 차단에 의한 차량 내장재 표면 손상 방지와 일부 부하 감소로 인한 안전성 향상을 도모할 수 있다.

나. 국내 동향

본 장에서는 자동차 에어컨에 관한 국내의 기술 동향을 분석하여 주요 부품 및 분야에 대하여 개발 동향을 요약하였다.
(1) 압축기 개발 동향

국내의 초기 자동차 에어컨용 압축기 기술은 외국 자본에 의해 도입되었다고 할 수 있다. 1980년대 Visteon, Delphi, Denso의 기술과 모델이 각각 한라공조, 대우기전, 두원공조에서 국산화의 개념으로 생산되기 시작했으나, 국내의 고유 모델이라고는 할 수 없었다.

1990년대 중반에 한라공조에서 미국 Visteon의 모델을 개선하여 독자적인 압축기 모델을 개발, 양산하기 시작하면서 고정용량형 압축기를 중심으로 고유 모델을 개발하기 시작하였다. 국내의 고정용량형 압축기는 한라공조와 두원공조가 사판식 압축기를, 대우기전에서는 위클 플레이트식 압축기를 주력으로 생산하고 있다.

국내의 고정용량형 압축기, 특히 사판식 압축기의 기술 수준은 세계적인 해외 경쟁사와 대등한 수준이며 매년 수출 물량도 증가하고 있는 추세이다.

한편 1990년대 후반부터 주목받기 시작한 가변용량형 압축기에 대한 기술은 선진국에 비해 다소 뒤처졌으며, 아직 양산 적용된 실적은 보고된바 없으나 스위치 방식의 가변용량형 압축기에 대한 개발 기술이 확보되어 국내 차량에서도 곧 적용될 전망이다.

또한 전환경 자동차 기술로 각종 반장 전기 자동차와 하이브리드 자동차의 개발이 국내 자동차 회사에서 진행 중이므로 전동 전동 압축기를 포함한 전기 에어컨 기술이 요구되고 있으나, 전동 압축기에 대한 기술은 아직 미미한 수준으로 향후 관심이 필요한 분야이다.

(2) 열교환기 개발 동향
제 2 장 기술동향 분석

응축기와 증발기로 대표되는 열교환기에 있어서 국내 개발 수준은 선진국의 경쟁사와 거의 동등 수준에 이르렀다고 할 수 있다. 응축기의 경우에 현재 주목받고 있는 수액기 일체형 응축기 기술 수준은 최초로 이 방식을 개발한 일본 Denso의 기술을 위협하는 수준이며, 현대의 베타나 차종을 시작으로 적용되고 있다.

증발기의 경우에도 Single Tank Type의 라미네이트 방식 증발기가 개발되어 적용중이며, 초박형화를 목표로 Denso나 Valeo 제품과 경쟁중에 있어 앞으로도 지속적인 개발이 예정된다.

(3) Multi-Zone 공조 개발 동향

국내의 자동차 에어컨 제어 기술은 FATC 방식은 기본 옵션으로 채택 가능한 수준에 이르렀으며, 최근에 운전자와 탑승객들의 편의성에 대한 요구수준이 증가됨에 따라 Multi-Zone에 대한 연구가 활발히 진행되고 있다.

최근에 운전석, 조수석 및 뒷자석의 온도제어가 개별적으로 가능한 Triple-Zone 공조 기술이 현대 에쿠스 차량에 장착되어 적용중이며, 4-Zone 공조 시스템도 곧 등장할 추세이다.

(4) 기타 기술 개발 동향

자동차 에어컨용 냉매로서 사용되고 있는 HFC-134a 냉매가 지구 온난화라는 악영향 때문에 장기적인 대체물질로는 적합하지 않다는 사실은 이미 알려져 있으므로, 자연 냉매와 같은 새로운 대체 냉매
다. 국내외 기술 비교 분석

지금까지 자동차 에어컨 기술에 대한 국내외 동향을 살펴보았으며, 분야별로 기술 수준을 비교, 요약하면 다음과 같다.

암축기 기술 분야에 있어서는 국내 수준이 아직 고정용량형 압축기에서 가변용량형 압축기로의 전환을 모색하는 단계인 반면, 해외 정책사에서는 가변용량형 압축기를 개발하여 적용중이며 개선하는 단계로서 국내 수준이 한 단계 뒤처진 상황이다.

응축기와 증발기 기술 분야에 있어서는 수액기 일체형 응축기, Single Tank Type 증발기 적용 등 상대적으로 국내외 기술 수준의 차이가 적고 동등 수준으로 판단된다.

그밖에 Multi-Zone 공조 기술, FATC 제어 기술 및 공기 필터 기술에 있어서도 해외 기술과 근접한 유사한 수준으로 사료된다.
제 2 장 기술동향 분석

라. 자동차 에어컨 기술의 전망

자동차 에어컨은 1999년 처음으로 개발된 이후, 자동차 디자인 및 성능 향상과 더불어 기술적으로 발전, 변화하였다. 지금까지 자동차 전 에어컨은 주로 기술적인 측면에서 많은 발전을 거듭하였지만, 앞으로는 에너지 효율, 전환경적 측면, 탑승객의 쾌적성과 안정성 향상과 같은 인간 첨화적인 측면에서의 기술 개발이 필연적인 추세이다.

에너지 효율 측면에서는 연비 저감에 밀집한 구성 부품의 고효율화와 경량화가 지속적으로 요구되는 추세이며, 친환경적인 측면에서도는 사용비용의 재검토 및 대체 냉매의 개발과 대체 냉매 적용에 따른 부품 기술 대응이 필요하다.

탑승객의 쾌적성과 안전성 측면은 향후 가장 관심이 주목되는 기술에서로서 탑승객의 기호와 대양 일사량과 일시각의 변화에 따른 다중 온도 제어 기술에 대한 연구가 활발히 진행될 전망이다.

불과 20~30년 전 만해도 사치품으로나 여겨졌던 자동차 에어컨이 국내외의 경우에도 거의 필수품이 되었으며, 세계적 승용차 부품의 수요점쟁에서 에어컨 시스템은 1994년 대비 2005년에는 약 95%의 성장률이 예측, 보고된 바 있다.4)

따라서 자동차 에어컨 관련 분야의 미래는 매우 밝으며, 기술적인 투자와 연구 개발이 더욱 절실히 요구되는 시점이다.

4) 자동차와 부품산업 원간조사보고서, 2002
특허정보 분석

본 장에서는 자동차용 에어컨산업과 관련된 국내외 특허정보를 검색, 분석하여 연도별, 출원인별, 분야별 국내외 특허출원 동향을 조사하였다. 또한, 이를 토대로 자동차용 에어컨산업과 관련된 국가별 특허출원 동향을 비교, 분석하였다.

1. 특허정보 조사

가. 이용 데이터베이스

자동차용 에어컨산업과 관련된 특허정보를 분석하기 위하여 정보 검색에 이용한 데이터베이스(DB)는 한국과학기술정보연구원(www.kisti.re.kr)이 서비스하고 있는 한국 공개특허(KUPA)와 미국 등록특허(USPA), 유럽 공개특허(EUPA) 및 일본의 공개특허(JEPA) 데이터베이스였다. USPA, EUPA 및 JEPA의 수록기간은 모두 1976년부터이며, 매월 갱신되고 있다.

나. 조사의 범위 및 결과
정보조사의 범위는 한국, 미국, 유럽, 일본을 분석대상의 국가로 삼았으며, 한국, 유럽과 일본의 경우에는 공개특허를, 미국의 경우에는 등록특허를 조사하였다.

정보조사와 관련하여 동향분석 그래프를 이해함에 있어서 유의한 점은, 그래프에 나타난 연도표시는 출원년도이고 특허건수는 매 연도에 출원하여 나중에 공개(한국, 유럽, 일본특허) 또는 등록(미국특허)된 건수를 나타내고 있으며, 특히 2001년과 2002년의 특허건수는 온전한 통계수치가 아니라는 점이다. 그 이유는 기술개발의 완성시기를 특허 출원일로 보기 때문에 출원년도에 대한 기술동향 분석을 하는 것이며, 최근(2001~2002년)의 데이터가 온전하지 못한 이유는 출원일 자로부터 1년 6개월이 지나야 공개특허가 나오기 때문이다.

국내 특허를 검색할 때 사용한 주요 색인어 및 검색방법은 다음과 같다.

#1 자동차?2
#2 에어컨?2 or 에어콘?2
#3 #1/ti and #2/ti

또한 미국특허, 유럽특허 및 일본특허는 영어로 작성된 데이터베이스를 검색하였는데, 여기서 사용한 주요 색인어 및 검색방법은 다음과 같다.

#1 vehicle?2
#2 air-condition?2 or aircondition?2 or (air adj condition?2)
#3 #1/ti and #2/ti
이렇게 수집한 국가별 정보검색 결과는 <표 3-1>과 <그림 3-1>에 나타내었다. 자동차용 에어컨과 관련해서는 미국과 일본의 출원건수 비율이 각각 39.3%(345건), 32.6%(286건)로 전세계 출원건수의 70% 이상을 차지하고 있다.

<표 3-1> 국가별 특허정보 조사 결과

<table>
<thead>
<tr>
<th>구분</th>
<th>한국</th>
<th>일본</th>
<th>미국</th>
<th>유럽</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>특허건수</td>
<td>140</td>
<td>286</td>
<td>345</td>
<td>107</td>
<td>878</td>
</tr>
</tbody>
</table>

자동차용 에어컨과 관련하여 검색되는 국제특허분류(IPC)를 정리하여 그 기술내용을 파악하였음 <표 3-2>와 같다. 자동차용 에어컨과 관련된 주요 국제특허분류는 B60H로서, 이에 대한 자세한 세부분류를 추가하여 나타내었다.
<table>
<thead>
<tr>
<th>IPC 분류</th>
<th>기술내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>B60H</td>
<td>특허 차량의 접착 또는 화물실의 납반, 냉방, 환기 또는 다른 공기처리수단에 관한 장치 또는 개조장치</td>
</tr>
<tr>
<td>B60H-001/00</td>
<td>납반, 냉방 또는 환기장치</td>
</tr>
<tr>
<td>B60H-001/02</td>
<td>추진장치로부터 열이 나오는 것</td>
</tr>
<tr>
<td>B60H-001/08</td>
<td>주방열기가 아닌 다른 방열기로부터 나오는 것</td>
</tr>
<tr>
<td>B60H-001/12</td>
<td>승용기를 사용하는 것</td>
</tr>
<tr>
<td>B60H-001/22</td>
<td>열이 추진장치로부터가 아니고 다른 것으로부터 나오는 것</td>
</tr>
<tr>
<td>B60H-001/24</td>
<td>환기장치의 장치 또는 납반 또는 납반에 두관이 있는 장소의 장치(노즐, 공기 확산장치(air-diffusers))</td>
</tr>
<tr>
<td>B60H-001/26</td>
<td>차량의 외면에 있는 환기구; 환기장치를 운반하는 관</td>
</tr>
<tr>
<td>B60H-001/32</td>
<td>납방장치(냉동림의 수온에 적합한 차량)</td>
</tr>
<tr>
<td>B60H-001/34</td>
<td>노즐, 공기확산장치(air-diffusers)</td>
</tr>
<tr>
<td>B60H-003/00</td>
<td>기타의 공기처리 장치?</td>
</tr>
<tr>
<td>B60S</td>
<td>달리 분류되지 않는 차량의 손잡, 세척, 수리, 기지, 들어 올림 또는 이동</td>
</tr>
<tr>
<td>B61D</td>
<td>철도 차량의 종류와 차체 세부</td>
</tr>
<tr>
<td>F02D</td>
<td>연소기관의 제어</td>
</tr>
<tr>
<td>F04B</td>
<td>액체용 유적형 기계, 윈프</td>
</tr>
<tr>
<td>F04D</td>
<td>비용적형 윈프</td>
</tr>
<tr>
<td>F24F</td>
<td>공기조화; 공기기술; 환기; 차폐를 위한 기류의 이용</td>
</tr>
<tr>
<td>F25B</td>
<td>냉장기계, 플랜트(Plants) 또는 시스템; 가열과 냉동을 조합 시스템; 히트 플러스시스템</td>
</tr>
<tr>
<td>F25D</td>
<td>냉장고; 냉각설; 아이스박스; 다른 서브플래스에 속하지 않는 납각 또는 동결장치</td>
</tr>
<tr>
<td>F28F</td>
<td>일반적인 열 교환 또는 열전달장치의 세부</td>
</tr>
<tr>
<td>G05D</td>
<td>비전기적 변량의 제어 또는 조정계</td>
</tr>
<tr>
<td>G09F</td>
<td>표시; 광고; 사인; 라벨 또는 명함; 시험</td>
</tr>
</tbody>
</table>

제 3 장 특허정보 분석

<표 3-2> 자동차용 에어컨 관련 IPC 분류별 기술내용
2. 특허정보 분석

가. 해외

자동차용 에어컨산업과 관련된 해외특허는 기술을 선도하고 있는 미국, 유럽, 일본의 특허정보를 검색하여 이를 분석하였다.

(1) 미국

<그림 3-3>은 미국 특허의 연도별 등록 건수를 나타낸 그림이다. 미국 특허의 경우 지금까지 등록된 특허 건수는 총 345건으로, 1974년 처음 1건이 등록된 이후 꾸준한 증가추세를 이루고 있으며, 특히 1999년 및 2000년에 급격한 증가세를 나타내었다.

<그림 3-3> 연도별 특허출원 건수
한편, 2001년과 2002년의 등록된 특허의 경우 각각 17건, 11건으로 감소하는 추세에 있으나, 이는 미국 특허가 등록특허이기 때문이다. 즉, <그림 3-3>에 나타나 있는 특허는 해당 연도에 출원한 특허가 나중에 등록되는 경우의 통계수치로서, 미국의 경우 특허출원 후 등록이 되기까지는 평균적으로 3년 6개월이 소요되는 것으로 알려져 있다. 이를 감안하면 2001년과 2002년의 데이터는 아직 실사가 끝나지 않은 특허출원도 상당히 많기 때문에 불완전한 수치라고 해석할 수 있다.

따라서, 미국에서 자동차용 에어컨과 관련된 기술개발은 1999년과 2000년의 급격한 증가추세가 실질적인 자동차 에어컨의 특허 등록추세라고 할 수 있다.

이와 같은 급격한 증가추세는 아마도 자동차 에어컨의 대체 냉매개발 등과 관련된 새로운 기술개발의 시도에 따른 증가라고 보는 것이 타당할 것이다.

미국에서 자동차용 에어컨과 관련된 등록특허를 가장 많이 보유한 곳은 <그림 3-4>와 같이 Denso Corporation으로서 전체 58건의 등록특허를 보유하고 있다.

또한, Nissan Motor가 42건으로 2위, Nippondenso Co., Ltd가 24건으로 3위에 위치해 있으며, (주)도요다 자동차가 18건으로 4위를 차지하는 등 미국의 특허등록에 있어서 미국의 기업보다는 일본의 기업들이 상당부분 특허등록을 하고 있는 것으로 나타났다.

이것은 미국의 자동차 에어컨 산업에 일본의 기업들이 활발하게 활동을 하고 있다는 것을 보여주는 것이다.
미국의 국제특허분류(IPC)에 따른 기술분야별 등록건수를 <그림 3-5>에 나타내었다. 미국의 자동차 에어컨에 대한 특허의 기술분류는 B60H가 44.2%로, “차량의 객실 또는 화물실의 난방, 냉방, 환기 또는 다른 공기처리 수단에 관한 장치 또는 개조장치”에 관한 기술의 특허가 가장 많은 것으로 나타났다.

그 다음으로는 “냉동기계, 플랜트 또는 시스템”인 F25B가 36.6%를 나타내었다.

즉, 미국의 특허에 있어서 자동차 에어컨에 관련된 특허는 전체 특허의 80% 이상이 B60H와 F25B의 분류로 나타났다.
한편, B60H의 기술중 세부적인 기술분류로는 B60H-001/32와 B60H-001/00이 각각 28.7%와 25.3%로, 주로 냉방장치와 난방 및 환기장치에 관한 특허 분류가 많은 것으로 나타났다.
(2) 유럽

<그림 3-7>은 유럽 특허의 연도별 출원 건수를 나타낸 그림이다. 유럽 특허는 2002년까지 총 107건의 특허가 출원되었다.

한편, 2002년에는 30건으로 가장 많은 특허가 출원되어 최근에 자동차 에어컨에 대한 연구개발이 활발하다는 것을 보여주고 있다.

<그림 3-7> 연도별 특허출원 건수
제 3 장 특허정보 분석

<그림 3-8>에서 알 수 있는 바와 같이 유럽에서 자동차용 에어컨 과 관련된 특허를 가장 많이 출원한 업체는 일본의 미스비씨중공업 이 8건으로 가장 많은 특허를 출원하였으며, 그 다음으로 Hansa Metall이 7건으로 2위를 차지하였다.

그 이외에도 도요다자동차와 Sanden Corp. 및 Behr GmbH & Co.가 각각 6건, 5건, 4건으로 3, 4, 5위를 차지하였다.

유럽에서도 미국에서와 마찬가지로 일본 기업의 특허 출원이 활발 한 것으로 나타났다.

유럽 특허의 국제특허분류(IPC)에 따른 기술분야별 출원건수를 살펴보면 <그림 3-9>와 같이 B60H(차량의 객실 또는 화물실의 난방, 냉방, 환기 또는 다른 공기처리 수단에 관한 장치 또는 개조장치) 분야의 특허가 78.9%(112건)로 가장 큰 비중을 차지하였다.

한편, 비중이 가장 높은 B60H의 세부분류는 <그림 3-10>에 나타난 바와 같이 B60H-001/00(난방, 냉방 또는 환기장치) 분야가 52.7%로 가장 높은 비중을 차지하였으며, B60H-001/32(냉방장치)에 관한 분야가 31.3%를 차지하여, 이 두 분야가 전체 B60H 분야에서 80% 이상으로 나타났다.

<그림 3-10> B60H의 세부 국제특허분류에 따른 출원건수 비율
(3) 일본

<그림 3-11>에 일본의 연도별 특허출원 건수를 나타내었다. 자동차용 에어컨과 관련된 일본 특허의 출원 건수는 286건으로 미국(345건) 다음으로 특허출원이 많은 것으로 나타났다.

일본의 특허 출원동향은 미국과 유럽의 특허 등록 및 출원과 달리 특별한 증가세보다는 꾸준한 특허출원이 이루어지고 있다.

일본의 특허출원은 1980년대 중반에 비교적 많은 특허가 출원되었으며, 그 이후 소강상태를 보이다가 1990년대 중반에 가장 많은 특허가 출원되는 양상을 보였다. 또한 최근에는 2000년부터 특허출원이 많이 되는 등 일본의 특허출원은 Sign 곡선의 형태로 특허출원이 많았다가 소강상태로 이어지는 양상을 보임으로써 기술개발에 따른 특허출원의 반응도가 많음을 알 수 있다.

<그림 3-11> 연도별 특허출원 건수
일본에서 자동차용 에어컨과 관련된 특허를 가장 많이 출원한 업체는 <그림 3-12>에서 알 수 있듯이 Nippon Denso사로 총 65건의 특허를 출원하였다. 그리고, Denso Corp가 35건을 출원하여 2위를 나타내는 등 Denso사 그룹의 특허가 두드러짐을 알 수 있었다.

그 이외의 업체로는 Nissan Motor이 27건, Diesel 기기가 26건, 미쓰비시중공업이 25건을 나타내어 그 뒤를 잇고 있다. 그 밖에 Zexel Corp와 Mazda Motor사 등이 각각 22건, 19건의 특허를 출원하였다.

<그림 3-12> 특허출원인 현황

일본의 국제특허분류(IPC)에 따른 기술분야별 특허출원 건수를 <그림 3-13>에 나타내었다.
제 3장 특허정보 분석 53

미국 및 영국과 마찬가지로 B60H(차량의 객실 또는 화물실의 난방, 냉방, 환기 또는 다른 공기처리수단에 관한 장치 또는 개조장치) 분야에 포함된 특허가 82.3%(339건)로 월등히 많음을 알 수 있다. 그 다음으로는 F25B, F24F, F04D 및 G09F 분야가 각각 6.3%, 6.1%, 3.4%, 1.9%를 나타내었다.

<그림 3-13> 국제특허분류에 따른 출원건수 비율

한편, 가장 비중이 높은 B60H 분야의 세부분야는 <그림 3-14>에 나타난 바와 같이 B60H-001/00(난방, 냉방장치 또는 환기장치) 분야가 49.6%, B60H-001/32(냉방장치) 분야가 23.6%를 차지하여, 세부분야에서도 미국 및 유럽과 마찬가지로 이 두 세부분야에 대한 특허가 많이 이루어지고 있음을 알 수 있다.
나. 국내

(1) 연도별 특허출원 건수

<그림 3-15>에 자동차용 에어컨과 관련된 국내의 연도별 특허 출원 건수를 나타내었다.

자동차용 에어컨과 관련된 국내 특허의 출원 건수는 총 140건으로 나타났다. 국내의 특허는 1980년대 중반부터 특허가 출원되기 시작하 여 1990년대 중반에 급격한 특허 출원이 이루어졌음을 알 수 있다.

이러한 동안 국내에서 자동차용 에어컨의 장착이 선택 사양이었으나, 점차 필수 사양이 됨에 따라 이에 대한 연구가 활발했기 때문 으로 추정된다. 한편, 1998년부터는 특허출원건수가 급격히 줄어들면서 이 분야에 대한 기술개발이 소강상태임을 나타내고 있다.
(2) 출원인별 특허출원 동향

<그림 3-16>에 특허출원인별 국내 특허 출원 현황을 나타내었다. 국내에서는 대기업인 대우자동차(주)가 39건으로 가장 많은 관란 특허를 출원하였다. 그 뒤로 현대자동차 및 기아자동차가 각각 32건 및 30건을 출원하여 국내 주요 자동차 회사가 전체 출원의 70% 이상을 차지하고 있는 것으로 나타났다.

즉, 국내의 자동차 제조업에 대한 특허는 주요 자동차 업체인 빅 3사가 거의 비슷한 수준으로 국내 특허출원을 주도하고 있으며, 그 이외의 기업으로 대우자동차와 만도기계가 각각 8건 및 4건을 출원하였다.
(3) 구체특허분야별 특허출원 동향

국내의 구체특허분야(IPC)에 따른 기술분야별 특허출원 건수를 <그림 3-17>에 나타내었다.

해외 선진국과 마찬가지로 B60H(차량의 객실 또는 화물실의 난방, 냉방, 화기 또는 다른 공기처리수단에 관한 장치 또는 개조장치) 분야가 82.5%(99건)로 가장 많은 비중을 나타내었다.

그 다음으로는 F25B(냉동기계, 플랜트 또는 시스템) 분야가 9.2%, B60S(차량 분류되지 않는 차량의 손절, 세척, 수리, 유지, 들어올림 또는 이동) 분야가 3.3%, F02D(연소기관의 제어) 분야가 2.5%, F04B (액체용 동작형 기계) 분야가 2.5%의 비중을 나타내었다.
한편, 가장 비중이 높은 B60H의 세부분류에서는 B60H-001/00(난방,냉난방 또는 환기장치) 분야가 39.4%로 가장 높은 비중을 나타내었으며, 그 다음으로는 B60H-001/32(냉방장치) 분야가 36.4%를 나타내어, 선진국과 마찬가지로 이 두 세부분야에 대한 연구개발 및 특허출원이 많은 것으로 나타났다.

그 외의 세부분류 분야는 B60H-001/12(송풍기를 사용하는 것) 분야가 8.1%, B60H-001/34(노즐, 공기확산장치) 분야가 6.1%, B60H-001/24(환기만의 장치 또는 난방 또는 냉방에 무관한 장소에 의 장치) 분야가 3.0%의 비중을 나타내었다.
다. 비교분석

자동차용 에어컨과 관련된 미국, 유럽, 일본, 한국의 특허 수는 각각 345건, 107건, 286건, 140건으로서 미국의 특허 수가 가장 많았다. 특히, 미국의 경우 등록특허의 건수이므로, 나머지 국가의 경우에는 모두 공개된 출원건수를 나타내고 있으므로 단순 비교는 불가능하다. 다시 말해서, 출원된 특허의 25%~30% 가량만이 통상적으로 등록되는 것으로 알려져 있기 때문에, 미국의 특허출원 건수는 등록특허의 3~4배 가량인 1,000건 이상인 것으로 추정할 수 있다.

한편, 국내 자동차 에어컨과 관련한 특허출원은 1980년대 중반부터 세계 주요국에 비해서 최소 10년 정도 뒤져 있는 것으로 나타났다.
출원인 분야에서는 한국을 제외한 선진국에서 일본기업의 특허출
원이 활발한 것으로 나타나, 자동차 에어컨에 대한 일본 기업의 연
구개발이 활발함을 알 수 있었다.

국제특허분류를 통한 기술의 분류에서는 4개국 모두 B60H분야가
가장 비중이 높은 것으로 나타났다. 이는 아이템의 특성에 기인한
것으로 판단된다. 한편, 유럽, 일본 및 한국의 경우 B60H 분야가
80%의 비중을 나타내었으나, 미국에서는 44.2%로 다른 국가에 비해
낮은 비중을 나타내었다. 이는 유사한 분야인 F25B 분야가 다른 국
가에 비해 상대적으로 높은 비중으로 나타나 이 분야로 분산된 것으
로 판단된다.

또한 B60H의 세부분류에서는 모든 국가가 마찬가지로 주로 냉방
장치에 관한 분류인 B60H-001/32(냉방장치)와 B60H-001/00(난방, 냉
방 또는 환기장치)의 비중이 가장 높은 것으로 나타나, 세계 각국의
연구개발 및 특허출원 기술분야가 비슷한 것으로 나타났다.
4장
시장동향 및 전망

본 장에서는 자동차 및 자동차용 에어컨 산업의 개요 및 특성, 외부환경 등에 대해 살펴보고, 자동차 및 자동차용 에어컨의 국내외 시장동향 및 업체동향에 대해 중점적으로 분석하였다.

1. 산업 구조 분석

가. 산업의 개요

자동차 산업은 생산, 교통, 수출 등과 같은 국민경제적 효과가 큰 우리나라의 기반산업으로서, 생산액이 2002년 기준으로 49조원에 달해 반도체에 이어 가장 큰 규모이고 고용비중이 8%에 이르는 대한히 중요한 산업이다. 관련 부품산업과 중고시장, 자동차 할부시장, 절비서비스업 등 전후방 연쇄효과를 감안하면 그 비중은 훨씬 더 커진다. 수출액도 2002년에 137억달러를 기록하여 이 역시 반도체에 이은 2위의 수출산업이며, 부품수출액 23억달러를 포함하면 160억달러에 달하고 있다.

Information Analysis

KIST
이러한 자동차 산업 가운데, 최근 들어 경직률이 증가하고 있는 자동차용 에어컨 산업은 그 중요성이 더욱 부각되고 있다. 자동차용 에어컨은 자동차 부품산업으로서, 일반적으로 하나 이상의 완성차 업체와 자동차 개발 단계에서부터 협력관계를 통하여 자동차 제조에 필요한 부품을 생산, 판매하고 완성차 업체들은 다수의 자동차 부품 업체들로부터 부품을 공급받아 자동차를 생산하는 주문자 상표 부착 생산 방식(OEM) 관계를 맺고 있다. 따라서 자동차용 에어컨 역시 OEM 생산방식에 의해 생산되며, 자동차 산업의 경기변동에 크게 영향을 받는다.
나. 산업의 특성

(1) 산업구조 및 특성

자동차용 에어컨 산업의 구조는 콤프레시, 콘덴서 어셈블리, 실린더, 모터 어셈블리 등과 같은 에어컨 제조를 위한 원재료를 공급하는 후방산업과 에어컨을 공급받는 전방산업을 가지고 있는 전형적인 부품산업의 구조를 가지고 있다.

자동차용 에어컨 제품은 일반 상품과는 달리 신차 개발시 공동 개발이 이루어져 자동차 조립시에 장착되기 때문에 개발에서 판매에 이르는 기간이 자동차 개발기간과 유사하게 소요되는 특성이 있다. 또한 기능성의 특성으로서, 공조제품의 기능이 사원함과 따뜻함을 제공하는 것으로 만족하던 과거와는 달리 신선한 공기의 배분, 오염된 공기의 청정 및 정화, 그리고 깨끗한 실내환경을 조성하는 기능이 요구되는 등 고객 요구의 폭이 확대되어 다양한 기능을 제공하는 시스템이 요구되고 있다.

자동차용 에어컨 산업업체들은 국내 자동차 업체수가 적어 자동차 업체의 부도 등이 발생하게 될 시 커다란 어려움에 직면하게 되기 때문에 일반적으로 수출의 비중을 높이고 해외 거래선을 다양화하려는 특성을 가지고 있다.

이와 함께, 자동차 업체와의 공동개발을 통해 제품을 판매할 수 있기 때문에 노동집약적인 측면보다는 기술집약적인 특성을 가지고 있다. 제품의 특성상 높은 정밀도를 요구하기 때문에 대부분의 생산 공정은 자동화되어 있다.
(2) 산업의 위치

산업의 라이프사이클에 따른 위치를 보면, 자동차용 에어컨은 성장성이나 수익성이 안정되어 있고 앞으로도 이러한 양상이 지속될 것으로 보이기 때문에 동 산업은 성숙기에 있는 것으로 판단된다.

<그림 4-2> 자동차용 에어컨의 PLC상의 위치

자료 : KISTI

기술적 측면에서는 계속되는 소비자들의 요구를 만족시켜야 하기 때문에 다양한 측면에서의 기술개발이 이루어지고는 있으나, 기술발전속도가 대단히 빠른 산업은 아니라고 할 수 있다.
2. 산업환경 분석

가. 기회 요인

(1) 승용차 보유대수 증가

국민소득의 증가와 생활수준의 개선 등으로 승용차가 개인의 필수품화가 되어감에 따라, 승용차 보유대수가 증가할 것으로 전망된다. 이에 따라 자동차 생산대수가 증가하고 자동차용 에어컨의 수요도 증가하게 될 것으로 전망된다. 한국자동차공업협회의 한국자동차중장 기수요예측 결과에 따르면, 우리나라의 인구 친명당 승용차 보유대수는 2003년 208대에서 2007년에는 223대, 2011년에는 249대까지 증가하게 될 것으로 예측되었다.(<그림 4-3> 참조)

<그림 4-3> 우리나라의 승용차 보유대수 전망

자료 : 한국자동차공업협회, 2003
(2) 해외 완성차 업체의 글로벌 아웃소싱 강화

최근 들어 세계 유명 자동차 업체들의 글로벌 아웃소싱 강화 전략에 따라, 세계적인 경쟁력을 갖추고 있는 국내 자동차용 에어컨 제조업체들의 해외 수출이 증가하고 있는 추세이며, 이러한 경향은 시간이 갈수록 기속화되어 갈 것으로 전망된다. 이것은 에어컨에만 한정된 요인은 아니며, 부품업체 전체의 기회요인이라고 볼 수 있다. 부품업체와 신형중전의 협력을 끼고 2001년부터 2006년까지 적수출의 규모는 연평균 38.3%가 증가할 것으로 예상되고 있다.

나. 위협 요인

2003년에는 미국경제의 회복기가 이어지면서 북미시장을 중심으로 한 자동차의 수출이 활발하게 이루어졌고 그 결과 수량기준으로 전년대비 15.1%가 증가하는 실적을 기록하였다. 그러나 국내 소비실리기 위축과 과업 등영향으로 내수가 크게 위축되어 전체 생산량이 전년과 비슷한 315만대에 그칠 것으로 전망되고 있다. 우리 나라 자동차산업의 경우 수출비중이 높은 편에 속하기는 하지만 절대적으로는 내수의 비중이 수출비중보다 높아 내수경기가 전체 산업에 미치는 영향이 크다. 따라서 2004년의 자동차 산업 경기는 내수실적의 개선 여부에 달려 있다고 해도 과언이 아니며, 자동차용 에어컨 역시 이러한 자동차 산업의 내수실적 개선이 없을 경우 상당히 큰 타격을 입을 가능성도 클 것으로 전망된다.
3. 국내의 시장 동향 분석

자동차용 에어컨 시장동향을 분석하기에 앞서 분석의 범위를 언급하고자 한다. 자동차용 에어컨은 자동차 산업과 매우 밀접한 연관성을 맺고 있는 바, 세계 자동차 산업과 자동차용 에어컨 시장, 국내 자동차 산업과 자동차용 에어컨 시장을 각각 분석하고자 한다.

가. 세계 시장동향

(1) 세계 자동차 산업동향

DRI-WEFA의 예측에 따르면 2004년 세계 자동차 수요는 지난 3년간 정체 또는 소폭 감소에서 벗어나 비교적 큰 폭의 증가를 기록할 전망이다. 중국이 9.7% 성장으로 이러한 증가세를 주도하고, 미국이 2.0% 증가하여 전체적으로는 약 5,829만대를 판매하게 될 것으로 전망되고 있다.

<표 4-1> 세계 자동차 판매전망

<table>
<thead>
<tr>
<th>지역</th>
<th>2001</th>
<th>2002</th>
<th>2003F</th>
<th>2004F</th>
<th>2005F</th>
<th>증가율 (03/04)</th>
<th>증가율 (04/05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>미 국</td>
<td>17,120</td>
<td>16,818</td>
<td>16,682</td>
<td>17,020</td>
<td>17,220</td>
<td>2.0%</td>
<td>1.2%</td>
</tr>
<tr>
<td>서유럽</td>
<td>16,658</td>
<td>16,194</td>
<td>15,657</td>
<td>15,663</td>
<td>16,172</td>
<td>0.0%</td>
<td>3.2%</td>
</tr>
<tr>
<td>일 본</td>
<td>5,807</td>
<td>5,699</td>
<td>5,712</td>
<td>5,737</td>
<td>5,724</td>
<td>0.4%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>중 국</td>
<td>2,103</td>
<td>2,971</td>
<td>3,639</td>
<td>3,991</td>
<td>4,318</td>
<td>9.7%</td>
<td>8.2%</td>
</tr>
<tr>
<td>ROW</td>
<td>14,264</td>
<td>14,767</td>
<td>14,911</td>
<td>15,878</td>
<td>16,884</td>
<td>6.5%</td>
<td>6.3%</td>
</tr>
<tr>
<td>합 계</td>
<td>55,952</td>
<td>56,449</td>
<td>56,601</td>
<td>58,289</td>
<td>60,318</td>
<td>3.0%</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

자료 : DRI-WEFA

<table>
<thead>
<tr>
<th>순위</th>
<th>1999년</th>
<th>2000년</th>
<th>2001년</th>
<th>2002년</th>
</tr>
</thead>
<tbody>
<tr>
<td>국가</td>
<td>생산드수</td>
<td>국가</td>
<td>생산드수</td>
<td>국가</td>
</tr>
<tr>
<td>1</td>
<td>미국</td>
<td>13,024,978</td>
<td>미국</td>
<td>12,778,151</td>
</tr>
<tr>
<td>2</td>
<td>일본</td>
<td>9,895,476</td>
<td>일본</td>
<td>10,140,796</td>
</tr>
<tr>
<td>3</td>
<td>독일</td>
<td>5,687,692</td>
<td>독일</td>
<td>5,526,615</td>
</tr>
<tr>
<td>4</td>
<td>캐나다</td>
<td>3,056,616</td>
<td>프랑스</td>
<td>3,183,681</td>
</tr>
<tr>
<td>5</td>
<td>프랑스</td>
<td>3,035,729</td>
<td>한국</td>
<td>3,114,998</td>
</tr>
<tr>
<td>6</td>
<td>스페인</td>
<td>2,852,389</td>
<td>스페인</td>
<td>3,033,324</td>
</tr>
<tr>
<td>7</td>
<td>한국</td>
<td>3,843,114</td>
<td>캐나다</td>
<td>2,961,636</td>
</tr>
<tr>
<td>8</td>
<td>영국</td>
<td>1,972,528</td>
<td>중국</td>
<td>2,069,069</td>
</tr>
<tr>
<td>9</td>
<td>중국</td>
<td>1,830,323</td>
<td>멕시코</td>
<td>1,922,889</td>
</tr>
<tr>
<td>10</td>
<td>아일랜드</td>
<td>1,701,256</td>
<td>영국</td>
<td>1,813,739</td>
</tr>
</tbody>
</table>

자료: OICA 및 각국 자동차공업협회 자료

일본의 자동차 생산점유율이 높아지고, 미국의 생산점유율이 낮아진 것은 최대의 자동차 시장이라고 할 수 있는 미국시장에서의 업체별 판매증가율을 통해서도 그 원인을 찾을 수 있다. 그림 4-4에서와 같이 일본의 도요타, 혼다, 닛산 등 일본업체의 판매증가율은 시장 전체의 판매증가율이 -1.5%였음에도 불구하고 3.6% 상승한 반면,
GM, FORD, Daimler Chrysler 등 미국의 빅3 업체의 판매증가율은 -3.7%를 기록하였다.

<그림 4-4> 미국시장에서의 업체별 판매증가율(2003년 1~10월)

(2) 세계 자동차용 에어컨 시장동향

에어컨은 이제 세계적으로도 자동차에 있어서 없어서는 안될 필수품이 되고 있다. Behr가 차를 소유하고 있는 사람 400명을 대상으로 실시한 소비자 조사에서 공기조화 시스템은 이제 무엇보다 중요한 요소임을 알 수 있다. 이러한 사실은 같은 조사에서 1995년에는 공기조화시스템의 중요하다는 대답이 28%였던 반면, 2001년초에 실시한 조사에서는 53%의 사람들이 중요하다고 대답하였다. 에어컨의 중요성은 또한 다른 부품들의 중요성 비교를 통해서도 알 수 있는데, 선루프에 대한 중요도가 1995년 34%에서 2001년에는 13%로 급격히 떨어진 것을 보더라도 알 수 있다.
<그림 4-5> 자동차 부품의 중요성에 대한 소비자 조사결과

이러한 소비자 조사결과를 반영하면서, 북미와 일본, 한국은 에어컨의 장착률이 이미 90%를 숭고하고 있고, 유럽은 최근 장착률이 증가하고 있는 양상이다. 유럽에서는 이미 복고급 승용차에는 에어컨이 설치되었으며, 이제 그 경쟁분야는 소형차 시장으로까지 확산되고 있 다. 추정컨대, 작년에는 유럽의 승용차의 65%에 이미 설치되었고, 2005년까지 그 비율은 75~80%까지 상승할 전망이다. 1990년의 장착 률이 12%였음을 감안해 볼 때, 상당히 크게 상승했음을 알 수 있다. 또한 남미에서도 에어컨의 장착률은 현재 전체 차종에서 43%를 보이 고 있다. 제조업자들은 현 추세대로라면 2005년에는 56%까지 도달할 것으로 내다보고 있다. 동유럽에서는 2000년의 42%에서 2005년에는 52%로 10포인트 증가하고, 아시아지역은 1999년의 67%에서 2005년에는 70%로 증가할 것으로 보인다. 전세계 평균 승용차용 에어컨 장착
제 4 장 시장동향 및 전망

全球化는 2001년 72%에서 2005년 75%로 증가한 것으로 전망하고 있다.
자동차용 어어콘의 세계 시장규모는 2002년을 기준으로 한 자동차
의 생산량과 전체계의 어어кон 평균 장착률 및 에프티마켓을 종합적
으로 고려해 볼 때, 약 4,470만대인 것으로 추정된다.

<그림 4-6> 세계 자동차용 어어곤의 업체별 시장점유율(2000년)

자료: 자동차와 부품산업

자동차용 어어곤의 업체동향을 보면, 과거에는 대다수의 자동차
제조업체들이 직계회사에서 직접 어어곤을 공급하도록 하고 있었다.
그러나 미국에서는 산업의 합리화 운동으로 GM에서 Delphi사가 독
립하고, Visteon이 Ford사에서 분리·독립하였다. Visteon은 Toyota
계의 Denso사와 Nissan계 Calsonic과 함께 세계 시장에서 매우 중요
한 지위를 갖고 있다. 이 4개사 이외에 주목할만한 업체로는 유럽의
Valeo사와 Behr사, 일본의 Valeo/Zexel 계열사가 있다.
Denso사는 세계 자동차용 어어곤 시장에서 24%의 시장점유율로 1
위를 차지하고 있고, 그 뒤를 Valeo사와 Visteon사, Delphi사, Behr사 등이 잇고 있다.

지역별로 각 업체별 시장점유율을 살펴보면, 유럽시장에서는 Valeo가 선두주자이며, 비율로 보면, 전체시장의 약 30%를 점유하고 있고 28%를 차지하고 있는 Behr사와 함께 유럽시장을 주도해가고 있다.

<그림 4-7> 유럽의 자동차용 에어컨 시장점유율(2000년)

자료: 자동차와 부품산업

Behr사의 경우는 품질면에서의 우위를 주장하며, 실질적인 유럽시장에서의 일등업체라고 주장하고 있다. Calsonic사는 영국과 스페인에서의 넓고의 선전에도 불구하고 여전히 유럽에서의 2류업체의 위치를 벗어나지 못하고 있는 양상이다. Denso사는 에어컨의 생산량을 현재의 140만대에서 2005년에는 300만대로 늘려 시장점유율 30%를 달성하려는 계획을 가지고 있다.

<그림 4-8> 북미의 자동차용 에어컨 시장점유율 (2000년)

미국에서는 신차의 98%에 에어컨이 장착되고 있기 때문에 업체간 경쟁이 매우 치열하다. 미국 에어컨 시장에서의 경쟁 포인트는 가격, 품질, 남기 및 시스템의 기술적 우월성 등이다.

일본시장에서는 Densork 자동차용 에어컨 시장의 거의 절반 가량
Vehicle Air-condition

을 공급하면서 압도적인 우위를 점하고 있다. Valeo는 Toyota와 Nissan을 대상으로 하여 climate control system을 중점적으로 판계하며, 향후 몇 년 내에 두 배 이상의 판매실적을 올릴 계획을 가지고 있다. Behr사는 일본 자동차용 에어컨 시장에 진출하기 위하여 Sanden사와 공동연구 및 시장개척에 관한 계획을 밝혔으며, 오는 2005년까지 일본시장의 10%를 점유할 계획을 가지고 있다.

<그림 4-9> 일본의 자동차용 에어컨 시장점유율(2000년)

자료: 자동차와 부품산업

(3) 세계 자동차용 에어컨의 시장전망

자동차용 에어컨의 시장을 전망하는 데 있어서 가장 중요한 것은 지 역별로 장착률이 다르고, 향후에 장착률이 어떻게 변화하여 길지를 예측해야 하는 것이다. 예를 들어 미국의 경우 이미 1990년대 초에 90%
이상이 장착되었으나, 유럽에서는 2000년에도 65%에 머무르고 있다. 종합적으로 볼 때, 세계적으로 자동차용 에어컨 시장은 계속해서 꾸준하게 성장할 것이며, 특히 유럽에서의 성장률이 두드러질 것으로 전망된다. 완성차 업체들은 에어컨을 통하여 가장 큰 이득을 보게 될 것으로 보이며, 이들은 에어컨의 기본장착을 규정화 하도록 요구하고 있다. 전세계적으로 자동차용 에어컨의 장착률은 2001년 72%에서 2005년에는 75%로 증가하게 될 전망이다. 지역별로는 역시 유럽의 장착률 증가가 가장 돋보이며, 남미와 동유럽의 증가폭도 클 것으로 전망된다.

<table>
<thead>
<tr>
<th>지역</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>서유럽</td>
<td>59</td>
<td>61</td>
<td>64</td>
<td>66</td>
<td>70</td>
<td>72</td>
<td>75</td>
</tr>
<tr>
<td>일본</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>92</td>
<td>92</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>NAFTA</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Pacific Rim</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>남미</td>
<td>43</td>
<td>45</td>
<td>47</td>
<td>49</td>
<td>52</td>
<td>54</td>
<td>56</td>
</tr>
<tr>
<td>중·동유럽</td>
<td>40</td>
<td>42</td>
<td>44</td>
<td>46</td>
<td>48</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>기타</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>세계</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>74</td>
<td>74</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

자료 : A&D의 Just-auto.com and industry estimates 이용자료

이와 같은 장착률과 장착되는 자동차의 약 7%를 차지하는 에어컨 마켓의 규모를 근거로 하여 수량을 기준으로 한 세계시장규모를 산출해보면 <그림 4-10>과 같다.
나. 국내 시장동향

(1) 국내 자동차 산업동향

그러나 매출액을 기준으로 한 판매금액의 추이는 자동차의 고급화에 따른 가격 상승으로 인하여 크게 증가하는 추세를 보이고 있다. 수출과 판매를 합한 총 판매금액은 1998년 29.5조원에서 2002년 65.5조원으로 연평균 22.1% 증가하였다.(<그림 4-12> 참조)

국내 업체별 내수시장 점유율은 현대자동차, 기아자동차, 쌍용자동차 등은 상승하고 있는 반면, GM대우는 하락세를 지속하고 있다. 현대자동차는 1998년 45.4%였던 시장점유율이 2002년 53.7%로 상승하였고, 기아자동차는 23.6%에서 2002년 28.7%로 상승하였으며, 쌍용자동차 역시 1998년 4.2%에서 2002년 7.0%로 상승하였다. 그러나 GM대우차는 1998년 26.8%에서 2002년 7.0%로 무려 20%에 가까운 점유율 하락을 기록하였다.
수출시장에서도 이러한 경향은 비슷하게 나타나고 있다. GM대우차는 2003년 하반기부터 빠른 정상화의 모습으로 돌아서고 있어 향후 점유율 상승이 기대되고 있다. 2002년의 경우 GM대우차의 가동률은 30%를 밑돌았으나, 2003년 10월에는 50%가 넘는 가동률을 기록하였고, 주로 수출 중심으로 정상화를 시도하고있는 것으로 보인다. GM대우차는 2004년에 완성차 60만대 이상을 판매하여 가동률을 60% 이상으로 끌어올릴 수 있을 것으로 전망된다.5)

(2) 국내 자동차용 에어컨 시장동향

국내 자동차용 에어컨의 성장은 에어컨 장착률의 상승에 크게 기인

5) 동양금융증권 리서치센터
하며, 특히 최근 출시되는 차량들은 에어컨 장착을 기본으로 하고 있어 현재는 100%의 장착률을 기록하고 있다. 따라서 국내 자동차용 에어컨 시장규모는 신차 출시대수와 에어터마켓 시장을 합산하면 된다.

한국생공조공업협회의 통계에 따르면, 승용차와 트럭, 버스 등을 포함한 국내 자동차용 에어컨 생산대수는 1998년 213만대에서 2002년에 400만대로 연평균 17.1% 증가하였다. 자동차의 종류별로는 승용차용이 전체의 92.3%로 압도적으로 많고, 트럭용이 7.4%를 차지한 반면, 버스용은 미미한 비중을 기록하였다.

<그림 4-13> 국내 자동차용 에어컨 생산대수

자료 : 한국생공조공업협회 자료를 재정리

한편 생산금액을 기준으로 한 국내 자동차용 에어컨 생산규모는 한국생공조공업협회의 2000년과 2001년 데이터에 오류가 있는 것으로 판단되어 정확한 금액을 산출하기가 곤란하기 때문에 승용차용
의 시장규모만을 살펴보았다.

국내 승용차용 에어컨의 생산금액은 1998년에 3,656억원을 기록하였고 이듬해인 1999년에 4,593억원으로 크게 증가하였으나, 2002년에는 4,827억원을 기록해 생산수량의 증가율인 17.1%에 크게 못 미쳤다. 이러한 차량의 고급화에도 불구하고 생산금액의 증가율이 저조한 것은 완성차 업체의 가격인하 압력에 따른 단가하락이 그 원인인 것으로 판단된다.

<그림 4-14> 국내 승용차용 에어컨의 생산금액 추이

자료: 한국방공조공업협회

자동차용 부품시장에서 살펴보아야 할 중요한 점은 OEM으로 완성차 업체에 담당하는 시장 이외에 사고 또는 기기의 결함으로 인한 부품의 교체시장인 에프터 마켓을 염두에 두어야 하는 것이다. 즉 목표시장이 완성차 업체의 OEM 납품과, 적수출, 그리고 에프터 마켓 등이
제 4 장 시장동향 및 전망 81

다고 볼 수 있다. 국내시장규모를 판단하는 데 있어서 직수출은 해당 되지 않으므로 일단 OEM마켓과 애프터 마켓으로 나눌 수 있다.

다른 부품들과는 달리 자동차용 에어컨의 경우에는 특별한 외부의 충격이 없을 경우, 일반 소모성 부품과는 달리 반영구적으로 사용할 수 있는 특성이 있다. 즉, 차량의 엔진과 비슷한 성격을 가지고 있다고 볼 수 있다. 따라서 애프터마켓의 시장규모는 그다지 크지 않으며, 업체들의 사업보고서를 기준으로 할 때, 총 판매금액의 약 6%를 차지하고 있는 것으로 판단된다. 이 중 직수출을 제외한 애프터 마켓의 비중은 7.07%로 추정할 수 있다.

<그림 4-15> 자동차용 에어컨의 목표시장별 비중

OEM마켓 92.93%
애프터마켓 7.07%

자료: 사업보고서를 바탕으로 KISTI 추정

국내에서 자동차용 에어컨을 생산 및 보급하고 있는 업체로는 가장 큰 규모를 자랑하는 한라공조(주)와 두원공조(주), 한국델파이(주), 대

6) 한라공조(주) 사업보고서, 2003
한라공조(주), 동원산업(주), 동성전기(주) 등 여러 업체가 있다. 이 가운데 점유율이 가장 높은 한라공조(주)와 점유율 2위를 차지하고 있는 두원공조(주)는 현대자동차와 기아자동차에 모두 납품하고 있으며, 대우기전공업(주)이 모습을 바꾼 한국델파이(주)가 GM대우차에 납품하고 있다.

특히 미국의 FORD사와 만도기계(주)가 합작 설립한 한라공조(주)는 FORD사와, GM사, 크라이슬러 등 미국의 빅3업체에 모두 제품을 공급하고 있는 등 품질면에서 높은 평가를 받고 있다.

<그림 4-16> 주요 자동차용 에어컨 업체의 거래선 현황

자료: 각 사 홈페이지 및 사업보고서

각 사의 자동차용 에어컨 부문의 시장점유율을 보면, 한라공조(주)와 두원공조(주)의 점유율은 상승하고 있는 데, 반하여 GM대우차에 주로 납품하고 있는 한국델파이(주)의 점유율은 하락하고 있는 상황이다. 한라공조(주)의 2002년 현재 시장점유율은 한라공조(주)가 58%를 차지하였고, 두원공조(주)가 22%를 차지하였으며, 한국델파이(주)와 기타업체들이 각각 11%와 9%를 차지하였다.
(3) 국내 자동차용 애어건 시장 전망

국내시장규모 산출에 있어서 특히 중요한 사항은 애프터마켓을 추정하는 것인데, 본 보고서에서는 현재 국내시장에서 가장 많은 자동차용 애어건을 공급하고 있는 한라공조(주)의 애프터마켓 판매비율인 6%를 기준으로 보았다.
이러한 자동차 생산전망과 애프터 마켓을 고려한 자동차용 애어건의 국내 시장규모는 2003년 335만대에서 2004년과 2005년에는 각각

7) 한라공조(주) 사업보고서, 2003
375만대와 393만대에 이르게 될 것으로 전망된다. 물론 이 전망치는 에어컨 업체의 해외 완성차 업체로의 직수출 몫량은 제외한 것이다.

<그림 4-18> 국내 자동차용 에어컨의 국내 시장규모 전망

자료: 대우증권 리시점센터 자료를 토대로 KISTI 예측
제5장

결 론

자동차산업은 생산, 고용, 수출 등과 같은 국민 경제적 효과가 큰 우리나라의 기반산업으로서, 반도체에 이어 2위의 생산액을 기록하고 있고, 고용비중이 8%에 이른다. 관련 부품산업과 중고시장, 자동차 할부시장, 정비서비스업 등 전후방 연쇄효과를 감안하면 그 비중은 더 커진다. 따라서 자동차 부품 산업 역시 중요성을 더욱 증가해 가고 있으며, 그 중에서도 자동차용 에어컨은 다른 부품들보다도 채용 증가가 높게 나타나는 부품이다.

2002년 현재 전세계 자동차용 에어컨의 시장규모는 4,470만대로 추정되며, 유럽 및 남미, 동유럽 지역 등은 중심으로 에어컨의 장착률이 크게 증가하고 있는 추세이다. 이러한 시장의 중요성 부각으로 인하여 많은 세계적인 에어컨 제조업체들간의 경쟁은 더욱 치열해질 전망이며, 우리나라 업체들도 이들 업체들과의 경쟁을 피할 수 없게 될 것이다.

세계적인 완성차 업체들의 글로벌 아웃소싱 전략과 해외수출시장의 호조와 같은 기회요인들로 인하여 국내업체의 사업환경은 개선되어 가고 있다. 이러한 외부적 환경을 잘 활용함으로써 국내 업체들의 세계적 지위 향상이 이루어지고, 이것이 우리나라의 기반산업인 자동차 산업의 국제경쟁력 강화에 기여할 수 있게 되기를 기대한다.
참고문헌

1. CFC 대체기술정보, CFC 정보 2003.3
2. 에어컨용 냉매 압축기, 이승순 외 2인, 설비저널 제31권 제11호, 2002년 11월호
4. 자동차 공조의 역사, 김석현 외 1인, 설비저널 제10호 2000년 12월호
5. 자동차 공조 시스템 개발 동향, 박창호, 설비저널 제29권 제10호 2000년 12월호
6. 차량용 공조 시스템의 이해, 김한경, 설비저널 제29권 제10호 2000년 12월호
7. 오존중 파괴물질 대체기술 현황 및 전망, 한국과학기술연구원 & 한국정밀화학공업협회, 1997.7
8. 자동차용 CO2 A/C System 개발 현황, 산업자원부, 2005
14. 이영미, “자동차산업-2004년 대수화북+중국성장모멘텀”, 메리츠중
권, 2003. 12
16. 강상민, “갑신년, 자동차산업의 세가지 급정적 변화”, 동양종합금
융중권, 2003. 11
20. 한국자동차공업협회, “한국 자동차 수요 증가 기예측모형”, 2003. 4
21. 한국자동차공업협회 통계자료
22. 한라공조(주) 사업보고서
23. http://dart.fss.or.kr
24. 각 사 homepage
저자 소개

구 영덕

• 공학 박사
• 산업기술정보원 책임연구원
• 현, 한국과학기술정보연구원 산림연구원
• 저서 : 정밀급형, 금속분말사출성형 등

김 강희

• 산업기술정보원 산업정보분석실 책임연구원
• 현, 한국과학기술정보연구원 산업정보분석실 산업연구원
• 저서 : 일루미늄콘덴서, 광계측장비, 미래형 자동차 외 다수

권 영 일

• 공학박사
• 산업기술정보원 책임연구원
• 현, 한국과학기술정보연구원 산업연구원
• 저서 : 산업용 로봇, 에어백, 텔레멕틱스 등
<자문 위원>

최 정원

• 한라공조 기술연구소 연구원